The aim of the investigation was to evaluate the possibility to apply infrared thermography for the diagnosis of pathological maxillofacial conditions.

Materials and Methods. 250 patients with different maxillofacial pathological conditions underwent an examination, thermographic analysis and comprehensive treatment. All patients were divided into three groups: group 1 (n=114) — patients with inflammatory diseases of maxillofacial area; group 2 (n=40) — patients with traumatic maxillofacial injuries; group 3 (n=96) — patients with benign (n=54) and malignant (n=42) neoplasms of the maxillofacial area.

Results. Local temperature indices of the maxillofacial area were found to change significantly in inflammatory diseases. The decrease of temperature indices was revealed in the centre of radicular cysts (by 0.1–0.3°C), in central and peripheral (by 1.3–2.3°C) points over chronic osteomyelitis, in acute purulent periostitis (by 1.2–1.9°C), in acute osteomyelitis (by 1.5–1.9°C), in acute granular abscess (by 2.0–2.3°C), in odontogenic phlegmon of maxillofacial area (by 1.4–3.0°C), and odontogenic abscess (by 1.8–2.4°C). We found significant increase of temperature indices in traumatic injuries: in lower type LeFort fractures (by 1.3–1.5°C), in medial type LeFort fractures (by 1.2–1.6°C), in mandibular fractures (by 0.2–0.6°C). Significant increase of temperature indices was observed over malignant neoplasms — in the range of 2.8–3.6°C, while temperature indices over benign tumors and tumor-like masses did not exceed 1.4°C.

Conclusion. Infrared thermography is a reliable, highly informative, non-invasive and safe method, requiring no trained staff. It can be used for diagnosis, differential diagnosis and prognostic studies in various diseases of maxillofacial area.

Key words: infrared thermography; diseases of maxillofacial region; oral mucosa; thermogram.
foci or reduction of its intensity in the areas with the
decreased regional blood flow [9–11]. Availability of
pathological changes is characterized by one of the
development of abnormal zones of hyper- or hypothermia, alteration of
normal thermotopography of the vascular pattern, and
changes of the temperature gradient in the examined
zone [12–15].

The aim of the investigation is to evaluate the
possibility of using infrared thermography in diagnosing
pathological conditions of the maxillofacial area.

Materials and Methods. The investigation included
250 patients with various pathological conditions of the
maxillofacial area, who underwent thermographic and
complex examination complying with the Declaration of
Helsinki (the Declaration was passed in Helsinki, Finland,
June, 1964 and revised in October, 2000 (Edinburgh,
Scotland). The investigation was approved by the ethic
committee of Nizhny Novgorod State Medical Academy.
Written informed consent was obtained from every
patient.

All patients were divided into 3 groups.

Group 1 (n=114) presented patients with inflammatory
diseases of the maxillofacial area, of them 20 had
radicular cysts of the jaws, 38 suffered from such
inflammations as periostitis and osteomyelitis. Diseases
of the lymphatic nodes in the form of acute purulent
lymphadenitis were noted in 13 cases, odontogenic
abscess of the maxillofacial area — in 23, and
odontogenic phlegmon — in 20 cases.

Group 2 (n=40) comprised patients with traumatic
injuries (TI) in the maxillofacial area: fractures in the
mandibular area were in 25 patients, in the maxilla with
lower type (I) and medial type (II) LeFort fracture — 15
cases.

Group 3 (n=96) included patients with benign (n=54)
and malignant (n=42) neoplasms in the maxillofacial
area.

The occurrence of the pathological process was
established on the basis of clinical signs, findings of the
clinical and laboratory investigations, additional
methods of investigations, results of histological studies,
and infrared thermography. All additional and special
diagnostic techniques were used according to the
standards of examining patients with different nosological
forms.

Local temperature was measured in several points
over the pathological focus and in symmetrical points on the
healthy side. Measurements were performed using a
thermographic complex CEM®-ThermoDiagnostics,
consisting of medical infrared thermograph CEM®-
Thermography and computer program (LLC “Connection
of the East and West Medicine” Ltd., Russia). Points
for measurement of the temperature gradient and their
number were randomly selected enabling the
examination of the areas of different sizes (Fig. 1).

The results were presented in quantitative values —
degrees Celcius, and in qualitative parameters — building
thermograms. Describing the thermograms obtained
during thermographic examination, the regions of thermal
glow with different colors and shades were revealed
[16]. Blue color corresponded to low temperature
(hypothermia). Zones with higher temperatures displayed
green, yellow and yellow-orange glow (isothermia). The
highest temperatures on the thermogram were shown up
as orange-red and red glow (hyperthermia).

Statistical data processing was made using Microsoft
Excel. Median (Me) and mean error (m) were determined
for each quantitative parameter. For numeric data
comparison Student t-criterion for small samples and
Fisher tables for the groups with observed values less
than 30 and more than 10 were used. Nonparametric
method, Mann—Whitney U-criterion, was applied for
unconnected populations. Differences at p<0.05 (95%
level of significance) were considered to be statistically
significant. Connection between the values was
evaluated by the results of Pearson correlation (r).

Results.

1. Thermographic investigation of inflammatory
diseases of maxillofacial area and oral mucous
membrane.

Tomography in patients with radicular cysts (K04.8)
revealed the reduction of the temperature values in the
central point of the cyst, on average, by 0.2±0.1°C, and
the increase of the temperature in peripheral points by
0.6±0.1°C (p=0.05). The cyst membrane is presented by
the two lines of glow, which surrounded a blue region in
the center of the pathological focus (Fig. 2, a). The blue
color in the center of the thermogram corresponded to
the cyst content projection. The thermogram adequately
reflected the structure of the radicular cyst and was
consistent with the radiographic picture (Fig. 2, b).

Quantitative temperature values of periostitis region
(acute purulent phase) (K10.2) in the central point of
the pathological focus were elevated relative to the
symmetrical healthy side, on average, by 1.7±0.2°C, in
the peripheral points — by 1.4±0.3°C. The thermographic
map (Fig. 3) looked stratified, had a high intensity of the
yellow and red glow. These zones corresponded to the
localization of the purulent process. Such image of the

Fig. 1. Diagnostic points over the pathological focus and in
symmetrical points on the healthy side
thermal field determined the formation of the suppurative infiltrate and dissociation of the periosteum fibers.

A thermographic map of acute osteomyelitis (K10.2) was characterized by the yellow-orange glow, spreading to both sides of the alveolar ridge (Fig. 4). Separate red inclusions on the thermogram corresponded to the altered vessels and fluctuation zone (Fig. 4, a). The temperature in the region of vestibular and oral jaw surfaces over the infiltrate and on the symmetrical healthy side in the central points differed, on average, by 1.8±0.1°C, in the peripheral points — by 1.7±0.1°C.

In the chronic phase of osteomyelitis (K10.2) independently on localization a region of the marked hypothermia over the pathological focus was displayed. Cavities outlined on the thermogram by the yellow lines corresponded to the sequestral capsule (Fig. 4, b). Thermographic picture agreed with the radiographic one, as zones of the blue glow matched the necrotized area of the jaw (Fig. 4, c). The temperature values over the chronic osteomyelitis focus were lower compared to the symmetrical healthy side: in the central point — on average by 2.8±0.2°C, in the peripheral points — by 1.8±0.6°C.

Quantitative temperature values in lymphadenitis differed from those of the symmetrical healthy side. In acute suppurative lymphadenitis (L04.0) the difference in the central point was, on average, 2.2±0.1°C, in peripheral points — 2.1±0.1°C. The thermogram looked like a zone of yellow glow, which appeared due to the enlargement of the lymphatic node, and the presence of hyperemic dilated vessels in it (Fig. 5).

Thermographic image of phlegmons (L03.2) of the maxillofacial area (Fig. 6, a) was characterized by diffused zone of hyperthermia with unclear boundaries, increase of the glow in the direction of inflammation.
Spreading, and formation of leakages. Yellow regions — necrosis sites — were seen on the background of the red glow. The temperature above the phlegmon was higher than above the symmetrical healthy side by 2.2±0.8°C.

A thermal field in abscess (K12.2) had clear contours and less intensive glow (Fig. 6, b).

The temperature in the points over the pathologic focus differed from that of the symmetrical points on the healthy side, on average, by 2.1±0.3°C.

2. Thermographic studies of traumatic injuries of maxillofacial area.

Comparing normal temperature values of the maxillofacial area with the values above the line of the lower type LeFort fracture, it was estimated that they were lower than above the fracture line, on average, by 1.4±0.1°C; above the line of the medial type LeFort fracture, on average, by 1.4±0.2°C. In case of uncomplicated fracture of the lower jaw the temperature difference amounted to 0.2–0.6°C.

Thermograms in lower type LeFort fractures featured by the presence of isothermia line going in the projection of the fracture line on the skin (Fig. 7, a). In median type LeFort fractures there appeared the zone of yellow glow on the background of green isothermia (Fig. 7, b) which was connected with the elevation of the temperature in the region of the inner angles of the eye orbit. On the thermogram a uniform zone of green glow displayed itself over the injury in the projection of the mandible fracture (Fig. 7, c).

3. Thermographic examination of neoplasms of the maxillofacial area and oral mucous membrane.

When examining patients with neoplasm of the maxillofacial area, it was found that the temperature values in malignant process elevated, on average, by 3.2±0.4°C. The generation of the thermographic image depended on several factors: firstly, the character of the thermal field was influenced by the compression of the vessels by the tumor; secondly, processes of anaerobic glycolysis prevailed in the neoplasm tissues; thirdly, infiltrative neoplasm growth resulted in the development of the perifocal inflammation in the tissues surrounding the tumor, contributing further to the formation of new vessels. The hyperthermia focus over the malignant process corresponded to the tumor localization, and manifested itself by the hyperthermia region directly over the tumor tissues (Fig. 8, a). The color of the focus depended on the degree of the tumor cell differentiation: the lower the tumor the brighter was the color of the thermal field, as the number of mitoses increased.

The rise of the temperature over the tumor within 0.4–1.4°C corresponded to the benign process. Zones of the marked hyperthermia were absent (Fig. 8, b).
Thus, the temperature values of the maxillofacial area and oral mucosa change significantly in terms of statistics in inflammatory diseases and traumatic injuries. Infrared thermography technique enables to conduct differential diagnosis of benign and malignant neoplasms at the early stages.

Conclusion. Infrared thermography is a reliable, highly informative, noninvasive, and safe method, not requiring special training for performing the diagnostic procedure, a differential diagnosis, and prognostic studied in different diseases of the maxillofacial area.

Study Funding and Competing Interests. The study was not supported by any financial sources. There is no topic specific conflict of interest related to the authors of this study.

References

