A CASE OF INTRALUMINAL ENDOSCOPIC SUTURING OF GASTRIC PERFORATION

UDC 616.33·089.81/85
Received 27.01.2014

S.V. Kantsevoy, PhD, M.D., Director of the Center for Therapeutic Endoscopy; Clinical Professor;
A.A. Mitrakov, Head of Endoscopy Department;
A.V. Peshkin, Oncologist, 2nd Oncology Department

1Institute for Digestive Health and Liver Disease at Mercy Medical Center, 301 St. Paul Place, Baltimore, Maryland 21202, USA;
2University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, Maryland 21201–1559, USA;
3Nizhny Novgorod Regional Oncological Dispensary, Ankudinovskoye shosse, 1, Nizhny Novgorod, Russian Federation, 603081

Recent advancements in endoscopic equipment enabled the diagnosis of precancerous conditions and early forms of gastric and colon cancer, which led to the emergence of new methods of endoscopic treatment — endoscopic mucosal resection and endoscopic submucosal dissection. Though the advantages of endoscopic interventions are quite evident (minimal invasiveness, preserving organ functions, shortening of hospital staying), these methods have weak points as well — the possibility of iatrogenic complications (hemorrhages, perforations) during these procedures. Such complications occur in 2–20% of patients [5–8]. Perforation is the most dangerous of them.

A standard treatment of perforations made during endoscopic operation is the transfer to laparotomy with the suture of the perforated hole [9–12].

A patient K., a 68-year-old woman, was admitted to oncological department No. 2 of affiliated clinic No. 1 of Nizhny Novgorod Regional Oncological Dispensary with a diagnosis “submucous gastric tumor”. It was a planned hospitalization. Gastroscopy showed a 2.5 cm lesion, located on the anterior wall of the lower third of the stomach body. According to the endoscopic US findings the formation occupied mucosal and submucosal layers without invasion into the muscular layer of the gastric wall. Computed tomography (CT) and US examination of the abdominal cavity did not reveal any additional pathology. The decision was made to remove the tumor by endoscopic submucosal dissection in the submucosal layer. The operation was performed Nov. 28, 2013 under intubation anesthesia in the position of the patient lying on the left side. CO₂ was used for insufflation. A single channel gastroscope GIF-Q165 (Olympus, Japan) was introduced into the stomach, the margins of the formation were marked by electrocutary (Fig. 1). By means of endoscopic needle physiological solution with addition of indigocarmine was injected to the submucosal layer.

For contacts: Mitrakov Alexandr Anatolievich, phone +7 930-700-33-84; e-mail: alexandr_mit@mail.ru
At the first stage a circular incision around the tumor was made (Fig. 2), the tumor was removed en bloc within the healthy tissues using endoscopic dissection technique in the submucosal layer (Fig. 3) Dissection was complicated by excessive arterial bleeding from the vessel supplying the tumor. During vessel coagulation in the ForcedCoag mode by means of forceps RadiaJaw (Boston Scientific, USA) perforation of the stomach wall occurred. The hole dimension was 5 mm, through which bowel loops in the abdominal cavity were clearly visualized (Fig. 4). A single-channel endoscope was replaced by a double-channel one (GIF-2T180, Olympus, Japan) with an endoscopic suturing device (Overstitch, Apollo EndoSurgery Inc., USA), mounted on the distal end of the endoscope. Successively guiding the needle of the suturing device through the opposite defect margins, two continuous sutures were made, each of which included four sticks by the needle on each side of the post-operative defect. Tightening and fixation of the sutures by the suturing device closed completely the gastric wall defect (Fig. 5). In the following insufflations of carbon dioxide full straightening of the stomach folds was observed, which proved impermeability of endoscopic sutures. The endoscope was pulled out and nasogastral probe introduced.

The patient was administered a wide-spectrum antibiotic (Ampisid) in the dose 1.5 g intravenously 3 times a day for 3 days.

The day after the operation the patient felt satisfactory, peritoneal symptoms were absent, the plain radiograph showed no free air in the abdominal cavity. On the second post-operative day she began to eat, on the 6th day an endoscopic control was performed (Fig. 6) and on the 7th day she was discharged in the satisfactory condition.

Control endoscopic examination in 6 weeks after the intervention (Jan. 9, 2014) demonstrated complete healing of the endoscopic dissection area.

Minimal invasive intraluminal endoscopic operations are applied with growing frequency for removal mucosal and submucosal formations of the stomach, esophagus, large and small intestine. The heaviest and potentially fatal complication of such interventions
is iatrogenic perforation of the hollow organ wall. The process of closure of this defect with the help of endoclips is rather labor- and time-consuming, and not always successful [13–15], that is why nowadays a standard treatment in iatrogenic perforations in Russia and abroad is, as it always has been, the transfer to laparotomy or laparoscopy with a suture of the perforation [9–12].

A case of successful endoscopic suturing of iatrogenic perforation of the gastric wall using endoscopic suturing device Overstitch (Apollo EndoSurgery Inc., USA) is presented here. The perforation of the gastric wall, generated in the course of making endoscopic submucosal dissection, was hermetically closed by two continuous endoscopic sutures. Suturing of the defect took only 20 min and allowed to avoid the transfer to laparoscopic or open abdominal operation. The post-operative period was uneventful, endoscopic control showed a good healing of the gastric wall defect.

The obtained results of endoscopic treatment of the gastric wall perforation using endoscopic suturing device demonstrated the efficacy, technical simplicity, and reliability of this method.

References