Today: Mar 29, 2024
RU / EN
Last update: Mar 1, 2024
Retinal Optical Coherence Tomography in Neurodegenerative Diseases (Review)

Retinal Optical Coherence Tomography in Neurodegenerative Diseases (Review)

Svetozarskiy S.N., Kopishinskaya S.V.
Key words: retina; biomarker; optical coherence tomography; Parkinson’s disease; Alzheimer’s disease; neurodegeneration.
2015, volume 7, issue 1, page 116.

Full text

html pdf
1273
2413

Increased aging of the population makes problems of the diagnosis and treatment of neurodegenerative diseases socially more significant. The ability to use the retina as a “window” to the central nervous system has attracted great attention in recent years. Optical coherence tomography (OCT) is a non-invasive method for in vivo studies of various conditions to generate high-resolution images of the tissue cross sections under study. Retinal OCT parameters are considered to be potential surrogate biomarkers of early-stage neurodegenerative disorders, and have already been included in the guidelines for diagnosing neuromyelitis optica. This review summarizes and analyzes the current information on retinal changes according to OCT data in neurodegeneration in vitro and in vivo in Alzheimer’s and Parkinson’s diseases. The application of ultra-high resolution OCT for the diagnosis of the early stages of neurodegeneration is also considered. Morphological and functional links and possible mechanisms for the retinal lesions in Alzheimer’s and Parkinson’s diseases, and their similarities in glaucoma are discussed. The efficacy of using this method in the diagnosis of neurodegenerative processes at an early stage is likely to be increased by the development of instrumentation and improvements in the design study for carrying out investigations in different groups of patients, including those having hereditary diseases of the nervous system.

  1. Kramer P.A., Ravi S., Chacko B., Johnson M.S., Darley-Usmar V.M. A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers. Redox Biol 2014 Jan; 2: 206–210, http://dx.doi.org/10.1016/j.redox.2013.12.026.
  2. Daumer M., Neuhaus A., Morrissey S., Hintzen R., Ebers G.C. MRI as an outcome in multiple sclerosis clinical trials. Neurology 2009 Feb; 72(8): 705–711, http://dx.doi.org/10.1212/01.wnl.0000336916.38629.43.
  3. Masland R.H. The neuronal organization of the retina. Neuron 2012 Oct; 76(2): 266–280, http://dx.doi.org/10.1016/j.neuron.2012.10.002.
  4. Thoreson W.B., Mangel S.C. Lateral interactions in the outer retina. Prog Retin Eye Res 2012 Sep; 31(5): 407–441, http://dx.doi.org/10.1016/j.preteyeres.2012.04.003.
  5. Bambo M.P., Garcia-Martin E., Pinilla J., Herrero R., Satue M., Otin S., Fuertes I., Marques M.L., Pablo L.E. Detection of retinal nerve fiber layer degeneration in patients with Alzheimer’s disease using optical coherence tomography: searching new biomarkers. Acta Ophthalmol 2014 Nov; 92(7): e581–e582, http://dx.doi.org/doi:10.1111/aos.12374.
  6. Fairless R., Williams S.K., Hoffmann D.B., Stojic A., Hochmeister S., Schmitz F., Storch M.K., Diem R. Preclinical retinal neurodegeneration in a model of multiple sclerosis. J Neurosci 2012 Apr; 32(16): 5585–5597, http://dx.doi.org/10.1523/JNEUROSCI.5705-11.2012.
  7. Greenberg B.M., Frohman E. Optical coherence tomography as a potential readout in clinical trials. Ther Adv Neurol Disord 2010 May; 3(3): 153–60, http://dx.doi.org/10.1177/1756285610368890.
  8. Guo L., Duggan J., Cordeiro M.F. Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 2010 Feb; 7(1): 3–14, http://dx.doi.org/10.2174/156720510790274491.
  9. Fjeldstad A.S., Carlson N.G., Rose J.W. Optical coherence tomography as a biomarker in multiple sclerosis. Expert Opin Med Diagn 2012 Nov; 6(6): 593–604, http://dx.doi.org/10.1517/17530059.2012.719496.
  10. Fujimoto J.G., Brezinski M.E., Tearney G.J., Boppart S.A., Bouma B., Hee M.R., Southern J.F., Swanson E.A. Optical biopsy and imaging using optical coherence tomography. Nat Med 1995 Sep; 1(9): 970–972, http://dx.doi.org/10.1038/nm0995-970.
  11. Abtahian F., Jang I.K. Optical coherence tomography: basics, current application and future potential. Curr Opin Pharmacol 2012 Oct; 12(5): 583–591, http://dx.doi.org/10.1016/j.coph.2012.07.015.
  12. Gladkova N.D. Opticheskaya kogerentnaya tomografiya v ryadu metodov meditsinskoy vizualizatsii [Optical coherence tomography in a series of medical imaging]. Nizhny Novgorod: Institute of Applied Physics RAS; 2005; 324 p.
  13. Adhi M., Duker J.S. Optical coherence tomography — current and future applications. Curr Opin Ophthalmol 2013 May; 24(3): 213–221, http://dx.doi.org/10.1097/ICU.0b013e32835f8bf8.
  14. Regatieri C.V., Branchini L., Fujimoto J.G., Duker J.S. Choroidal imaging using spectral-domain optical coherence tomography. Retina 2012 May; 32(5): 865–876, http://dx.doi.org/doi:10.1097/IAE.0b013e318251a3a8.
  15. Parisi V., Manni G., Spadaro M., Colacino G., Restuccia R., Marchi S., Bucci M.G., Pierelli F. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 1999 Oct; 40(11): 2520–2527.
  16. Wang X., Jia Y., Spain R., Potsaid B., Liu J.J., Baumann B., Hornegger J., Fujimoto J.G., Wu Q., Huang D. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br J Ophthalmol 2014; 98(10): 1368–1373, http://dx.doi.org/doi:10.1136/bjophthalmol-2013-304547.
  17. Garcia-Martin E., Calvo B., Malvè M., Herrero R., Fuertes I., Ferreras A., Larrosa J.M., Polo V., Pablo L.E. Three-dimensional geometries representing the retinal nerve fiber layer in multiple sclerosis, optic neuritis, and healthy eyes. Ophthalmic Res 2013; 50(1): 72–81, http://dx.doi.org/10.1159/000350413.
  18. Balk L., Tewarie P., Killestein J., Polman C., Uitdehaag B., Petzold A. Disease course heterogeneity and OCT in multiple sclerosis. Mult Scler 2014 Jan; 20(9): 1198–1206, http://dx.doi.org/10.1177/1352458513518626.
  19. Balk L.J., Twisk J.W., Steenwijk M.D., Daams M., Tewarie P., Killestein J., Uitdehaag B.M., Polman C.H., Petzold A. A dam for retrograde axonal degeneration in multiple sclerosis? J Neurol Neurosurg Psychiatry 2014 Jul; 85(7): 782–789, http://dx.doi.org/10.1136/jnnp-2013-306902.
  20. Schinzel J., Zimmermann H., Paul F., Ruprecht K., Hahn K., Brandt A.U., Dörr J. Relations of low contrast visual acuity, quality of life and multiple sclerosis functional composite: a cross-sectional analysis. BMC Neurol 2014 Feb; 14: 31, http://dx.doi.org/10.1186/1471-2377-14-31.
  21. Trebst C., Jarius S., Berthele A., Paul F., Schippling S., Wildemann B., Borisow N., Kleiter I., Aktas O., Kümpfel T.; Neuromyelitis Optica Study Group (NEMOS). Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 2014 Jan; 261(1): 1–16, http://dx.doi.org/10.1007/s00415-013-7169-7.
  22. Pula J.H., Towle V.L., Staszak V.M., Cao D., Bernard J.T., Gomez C.M. Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuroophthalmology 2011 Jun; 35(3): 108–114, http://dx.doi.org/10.3109/01658107.2011.580898.
  23. Wiethoff S., Zhour A., Schöls L., Fischer M.D. Retinal nerve fibre layer loss in hereditary spastic paraplegias is restricted to complex phenotypes. BMC Neurol 2012 Nov; 12: 143, http://dx.doi.org/10.1186/1471-2377-12-143.
  24. Wang D., Li Y., Wang C., Xu L., You Q.S., Wang Y.X., Zhao L., Wei W.B., Zhao X., Jonas J.B. Localized retinal nerve fiber layer defects and stroke. Stroke 2014 Jun; 45(6): 1651–1566, http://dx.doi.org/10.1161/STROKEAHA.113.004629.
  25. McNeill A., Roberti G., Lascaratos G., Hughes D., Mehta A., Garway-Heath D.F., Schapira A.H. Retinal thinning in Gaucher disease patients and carriers: results of a pilot study. Mol Genet Metab 2013 Jun; 109(2): 221–223, http://dx.doi.org/10.1016/j.ymgme.2013.04.001.
  26. Garcia-Martin E., Satue M., Otin S., Fuertes I., Alarcia R., Larrosa J.M., Polo V., Pablo L.E. Retina measurements for diagnosis of Parkinson disease. Retina 2014 May; 34(5): 971–980, http://dx.doi.org/10.1097/IAE.0000000000000028.
  27. Garcia-Martin E.S., Rojas B., Ramirez A.I., de Hoz R., Salazar J.J., Yubero R., Gil P., Triviño A., Ramirez J.M. Macular thickness as a potential biomarker of mild Alzheimer’s disease. Ophthalmology 2014 May; 121(5): 1149–1151, http://dx.doi.org/10.1016/j.ophtha.2013.12.023.
  28. Garcia-Martin E., Pablo L.E., Gazulla J., Vela A., Larrosa J.M., Polo V., Marques M.L., Alfaro J. Retinal segmentation as noninvasive technique to demonstrate hyperplasia in ataxia of Charlevoix-Saguenay. Invest Ophthalmol Vis Sci 2013 Oct; 54(10): 7137–7142. http://dx.doi.org/10.1167/iovs.13-12726.
  29. Kopishinskaya S., Svetozarskiy S., Antonova V., Gustov A. The first data on retinal optical coherence tomography parameters in Huntington’s disease. Eur J Neurol 2014 May; 21(Suppl 1): 36.
  30. Yavas G.F., Yilmaz O., Küsbeci T., Oztürk F. The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol 2007 Sep–Oct; 17(5): 812–816.
  31. Zhang N., Hoffmeyer G.C., Young E.S., Burns R.E., Winter K.P., Stinnett S.S., Toth C.A., Jaffe G.J. Optical coherence tomography reader agreement in neovascular age-related macular degeneration. Am J Ophthalmol 2007 Jul; 144(1): 37–44, http://dx.doi.org/10.1016/j.ajo.2007.03.056.
  32. Syc S.B., Warner C.V., Hiremath G.S., Farrell S.K., Ratchford J.N., Conger A., Frohman T., Cutter G., Balcer L.J., Frohman E.M., Calabresi P.A. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler 2010 Jul; 16(7): 829–839, http://dx.doi.org/10.1177/1352458510371640.
  33. Tewarie P., Balk L., Costello F., Green A., Martin R., Schippling S., Petzold A. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One 2012; 7(4): e34823, http://dx.doi.org/10.1371/journal.pone.0034823.
  34. Schippling S., Balk L., Costello F., Albrecht P., Balcer L., Calabresi P., Frederiksen J., Frohman E., Green A., Klistorner A., Outteryck O., Paul F., Plant G., Traber G., Vermersch P., Villoslada P., Wolf S., Petzold A. Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria. Mult Scler 2014, [Epub ahead of print], http://dx.doi.org/10.1177/1352458514538110.
  35. Alizadeh Y., Panjtanpanah M.R., Mohammadi M.J., Behboudi H., Kazemnezhad L.E. Reproducibility of optical coherence tomography retinal nerve fiber layer thickness measurements before and after pupil dilation. J Ophthalmic Vis Res 2014 Jan; 9(1): 38–43.
  36. Hroudová J., Singh N., Fišar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int 2014; 2014: 175062, http://dx.doi.org/10.1155/2014/175062.
  37. Kurokawa M., Kornbluth S. Сaspases and kinases in a death grip. Cell 2009 Sep; 138(5): 838–854, http://dx.doi.org/10.1016/j.cell.2009.08.021.
  38. Tudor D., Kajić V., Rey S., Erchova I., Považay B., Hofer B., Powell K.A., Marshall D., Rosin P.L., Drexler W., Morgan J.E. Non-invasive detection of early retinal neuronal degeneration by ultrahigh resolution optical coherence tomography. PLoS One 2014 Apr; 9(4): e93916, http://dx.doi.org/10.1371/journal.pone.0093916.
  39. Mead B., Logan A., Berry M., Leadbeater W., Scheven B.A. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 2013 Nov; 54(12): 7544–7556, http://dx.doi.org/10.1167/iovs.13-13045.
  40. Berger A., Cavallero S., Dominguez E., Barbe P., Simonutti M., Sahel J.A., Sennlaub F., Raoul W., Paques M., Bemelmans A.P. Spectral-domain optical coherence tomography of the rodent eye: highlighting layers of the outer retina using signal averaging and comparison with histology. PLoS One 2014 May; 9(5): e96494, http://dx.doi.org/10.1371/journal.pone.0096494.
  41. Branchini L., Regatieri C.V., Flores-Moreno I., Baumann B., Fujimoto J.G., Duker J.S. Reproducibility of choroidal thickness measurements across three spectral domain optical coherence tomography systems. Ophthalmology 2012 Jan; 119(1): 119–123, http://dx.doi.org/10.1016/j.ophtha.2011.07.002.
  42. Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011 Sep; 1(1): a006189, http://dx.doi.org/10.1101/cshperspect.a006189.
  43. Nelson P.T., Alafuzoff I., Bigio E.H., Bouras C., Braak H., Cairns N.J., et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012 May; 71(5): 362–381, http://dx.doi.org/10.1097/NEN.0b013e31825018f7.
  44. Hinton D.R., Sadun A.A., Blanks J.C., Miller C.A. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 1986 Aug; 315(8): 485–487, http://dx.doi.org/10.1056/NEJM198608213150804.
  45. Ning A., Cui J., To E., Ashe K.H., Matsubara J. Amyloid-β deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 2008 Nov; 49(11): 5136–5143, http://dx.doi.org/10.1167/iovs.08-1849.
  46. Perez S.E., Lumayag S., Kovacs B., Mufson E.J., Xu S. β-amyloid deposition and functional impairment in the retina of the APPswe/PS1∆E9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 2009 Feb; 50(2): 793–800, http://dx.doi.org/10.1167/iovs.08-2384.
  47. Berisha F., Feke G.T., Trempe C.L., McMeel J.W., Schepens C.L. Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 2007 May; 48(5): 2285–2289, http://dx.doi.org/10.1167/iovs.06-1029.
  48. Chiu K., Chan T.F., Wu A., Leung I.Y., So K.F., Chang R.C. Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina? Age (Dordr) 2012 Jun; 34(3): 633–649, http://dx.doi.org/10.1007/s11357-011-9260-2.
  49. Frost S., Kanagasingam Y., Sohrabi H., Vignarajan J., Bourgeat P., Salvado O., Villemagne V., Rowe C.C., Macaulay S.L., Szoeke C., Ellis K.A., Ames D., Masters C.L., Rainey-Smith S., Martins R.N.; AIBL Research Group. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry 2013 Feb; 3(2): e233, http://dx.doi.org/10.1038/tp.2012.150.
  50. Koronyo-Hamaoui M., Koronyo Y., Ljubimov A.V., Miller C.A., Ko M.K., Black K.L., Schwartz M., Farkas D.L. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 2011 Jan; 54(Suppl 1): S204–S217, http://dx.doi.org/10.1016/j.neuroimage.2010.06.020.
  51. Tsai Y., Lu B., Ljubimov A.V., Girman S., Ross-Cisneros F.N., Sadun A.A., Svendsen C.N., Cohen R.M., Wang S. Ocular changes in TgF344-AD rat model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 2014 Jan; 55(1): 523–534, http://dx.doi.org/10.1167/iovs.13-12888.
  52. Simao L.M. The contribution of optical coherence tomography in neurodegenerative diseases. Curr Opin Ophthalmol 2013 Nov; 24(6): 521–527, http://dx.doi.org/10.1097/ICU.0000000000000000.
  53. Jindahra P., Plant G.T. Retinal nerve fibre layer thinning in Alzheimer Disease. Chapter 14. In: The clinical spectrum of Alzheimer’s disease — the charge toward comprehensive diagnostic and therapeutic strategies. Edited by De La Monte S. InTech; 2011; p. 279–294, http://dx.doi.org/10.5772/16891.
  54. Blanks J.C., Schmidt S.Y., Torigoe Y., Porrello K.V, Hinton D.R., Blanks R.H. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 1996 May–Jun; 17(3): 385–395, http://dx.doi.org/10.1016/0197-4580(96)00009-7
  55. Löffler K.U., Edward D.P., Tso M.O. Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci 1995 Jan; 36(1): 24–31.
  56. Ho W.L., Leung Y., Tsang A.W., So K.F., Chiu K., Chang R.C. Review: tauopathy in the retina and optic nerve: does it shadow pathological changes in the brain? Mol Vis 2012; 18: 2700–2710.
  57. Jindahra P., Petrie A., Plant G.T. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 2009 Mar; 132(3): 628–634, http://dx.doi.org/10.1093/brain/awp001.
  58. Bridge H., Jindahra P., Barbur J., Plant G.T. Imaging reveals optic tract degeneration in hemianopia. Invest Ophthalmol Vis Sci 2011 Jan 21; 52(1): 382–388, http://dx.doi.org/10.1167/iovs.10-5708.
  59. Jindahra P., Petrie A., Plant G.T. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 2012 Feb; 135(2): 534–541, http://dx.doi.org/10.1093/brain/awr324.
  60. Millington R.S., Yasuda C.L., Jindahra P., Jenkinson M., Barbur J.L., Kennard C., Cendes F., Plant G.T., Bridge H. Quantifying the pattern of optic tract degeneration in human hemianopia. J Neurol Neurosurg Psychiatry 2014 Apr; 85(4): 379–386, http://dx.doi.org/10.1136/jnnp-2013-306577.
  61. Tamura H., Kawakami H., Kanamoto T., Kato T., Yokoyama T., Sasaki K., Izumi Y., Matsumoto M., Mishima H.K. High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 2006 Jul; 246(1–2): 79–83, http://dx.doi.org/10.1016/j.jns.2006.02.009.
  62. Bayer A.U., Ferrari F., Erb C. High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 2002; 47(3): 165–168, http://dx.doi.org/10.1159/000047976.
  63. Bayer A.U., Ferrari F. Severe progression of glaucomatous optic neuropathy in patients with Alzheimer’s disease. Eye (Lond) 2002 Mar; 16(2): 209–212.
  64. Wostyn P., De Groot V., Van Dam D., Audenaert K., De Deyn P.P. The role of low intracranial pressure in the development of glaucoma in patients with Alzheimer’s disease. Prog Retin Eye Res 2014 Mar; 39: 107–108, http://dx.doi.org/10.1016/j.preteyeres.2013.12.002.
  65. Ott B.R., Cohen R.A., Gongvatana A., Okonkwo O.C., Johanson C.E., Stopa E.G., Donahue J.E., Silverberg G.D.; Alzheimer’s Disease Neuroimaging Initiative. Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease. J Alzheimers Dis 2010; 20(2): 647–657, http://dx.doi.org/10.3233/JAD-2010-1406.
  66. Serot J.M., Béné M.C., Faure G.C. Choroid plexus, aging of the brain, and Alzheimer’s disease. Front Biosci 2003 May; 8: s515–s521.
  67. Johanson C.E., Duncan J.A. 3rd, Klinge P.M., Brinker T., Stopa E.G., Silverberg G.D. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008 May 14; 5: 10, http://dx.doi.org/10.1186/1743-8454-5-10.
  68. Paquet C., Boissonnot M., Roger F., Dighiero P., Gil R., Hugon J. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 2007 Jun; 420(2): 97–99, http://dx.doi.org/10.1016/j.neulet.2007.02.090.
  69. Marziani E., Pomati S., Ramolfo P., Cigada M., Giani A., Mariani C., Staurenghi G. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2013 Sep; 54(9): 5953–5958, http://dx.doi.org/doi:10.1167/iovs.13-12046.
  70. Kirbas S., Turkyilmaz K., Anlar O., Tufekci A, Durmus M. Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 2013 Mar; 33(1): 58–61, http://dx.doi.org/10.1097/WNO.0b013e318267fd5f.
  71. Shi Z., Wu Y., Wang M., Cao J., Feng W., Cheng Y., Li C., Shen Y. Greater attenuation of retinal nerve fiber layer thickness in Alzheimer’s disease patients. J Alzheimers Dis 2014; 40(2): 277–283, http://dx.doi.org/10.3233/JAD-131898.
  72. Kromer R., Serbecic N., Hausner L., Froelich L., Aboul-Enein F., Beutelspacher S.C. Detection of retinal nerve fiber layer defects in Alzheimer’s disease using SD-OCT. Front Psychiatry 2014; 5: 22, http://dx.doi.org/10.3389/fpsyt.2014.00022.
  73. He X.-F., Liu Y.-T., Peng C., Zhang F., Zhuang S., Zhang J.S. Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis. Int J Ophthalmol 2012; 5(3): 401–405, http://dx.doi.org/10.3980/j.issn.2222-3959.2012.03.30.
  74. Iseri P.K., Altinaş O., Tokay T., Yüksel N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 2006 Mar; 26(1): 18–24, http://dx.doi.org/10.1097/01.wno.0000204645.56873.26.
  75. Bayhan H.A., Bayhan S.A., Celikbilek A., Tanık N., Gürdal C. Evaluation of the chorioretinal thickness changes in Alzheimer’s disease using spectral-domain optical coherence tomography. Clin Experiment Ophthalmol 2014 Jul, [Epub ahead of print], http://dx.doi.org/10.1111/ceo.12386.
  76. Parisi V., Restuccia R., Fattapposta F., Mina C., Bucci M.G., Pierelli F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 2001 Oct; 112(10): 1860–1867, http://dx.doi.org/10.1016/S1388-2457(01)00620-4.
  77. Kromer R., Serbecic N., Hausner L., Froelich L., Beutelspacher S.C. Comparison of visual evoked potentials and retinal nerve fiber layer thickness in Alzheimer’s disease. Front Neurol 2013; 4: 203, http://dx.doi.org/10.3389/fneur.2013.00203.
  78. Gharbiya M., Trebbastoni A., Parisi F., Manganiello S., Cruciani F., D’Antonio F., De Vico U., Imbriano L., Campanelli A., De Lena C. Choroidal thinning as a new finding in Alzheimer’s disease: evidence from enhanced depth imaging spectral domain optical coherence tomography. J Alzheimers Dis 2014; 40(4): 907–917, http://dx.doi.org/10.3233/JAD-132039.
  79. Khoo T.K., Yarnall A.J., Duncan G.W., Coleman S., O’Brien J.T., Brooks D.J., Barker R.A., Burn D.J. The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 2013 Jan 15; 80(3): 276–281, http://dx.doi.org/10.1212/WNL.0b013e31827deb74.
  80. Archibald N.K., Clarke M.P., Mosimann U.P., Burn D.J. The retina in Parkinson’s disease. Brain 2009; 132: 1128–1145, http://dx.doi.org/10.1093/brain/awp068.
  81. Hajee M.E., March W.F., Lazzaro D.R., Wolintz A.H., Shrier E.M., Glazman S., Bodis-Wollner I.G. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 2009 Jun; 127(6): 737–741, http://dx.doi.org/10.1001/archophthalmol.2009.106.
  82. Bodis-Wollner I. Foveal vision is impaired in Parkinson’s disease. Parkinsonism Relat Disord 2013 Jan; 19(1): 1–14, http://dx.doi.org/10.1016/j.parkreldis.2012.07.012.
  83. He Q., Xu H.P., Wang P., Tian N. Dopamine D1 receptors regulate the light dependent development of retinal synaptic responses. PLoS One 2013 Nov 19; 8(11): e79625, http://dx.doi.org/10.1371/journal.pone.0079625.
  84. Hwang C.K., Chaurasia S.S., Jackson C.R., Chan G.C., Storm D.R., Iuvone P.M. Circadian rhythm of contrast sensitivity is regulated by a dopamine-neuronal PAS-domain protein 2-adenylyl cyclase 1 signaling pathway in retinal ganglion cells. J Neurosci 2013 Sep; 33(38): 14989–14997, http://dx.doi.org/10.1523/JNEUROSCI.2039-13.2013.
  85. Aung M.H., Park H.N., Han M.K., Obertone T.S., Abey J., Aseem F., Thule P.M., Iuvone P.M., Pardue M.T. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci 2014 Jan; 34(3): 726–736, http://dx.doi.org/10.1523/JNEUROSCI.3483-13.2014.
  86. Archibald N.K., Clarke M.P., Mosimann U.P., Burn D.J. Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov Disord 2011 Nov; 26(13): 2387–2395, http://dx.doi.org/10.1002/mds.23891.
  87. Archibald N.K., Hutton S.B., Clarke M.P., Mosimann U.P., Burn D.J. Visual exploration in Parkinson’s disease and Parkinson’s disease dementia. Brain 2013 Mar; 136(Pt 3): 739–750, http://dx.doi.org/10.1093/brain/awt005.
  88. Urwyler P., Nef T., Killen A., Collerton D., Thomas A., Burn D., McKeith I., Mosimann U.P. Visual complaints and visual hallucinations in Parkinson’s disease. Parkinsonism Relat Disord 2014 Mar; 20(3): 318–222, http://dx.doi.org/10.1016/j.parkreldis.2013.12.009.
  89. Inzelberg R., Ramirez J.A., Nisipeanu P., Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 2004 Nov; 44(24): 2793–2797, http://dx.doi.org/10.1016/j.visres.2004.06.009.
  90. Yu J.G., Feng Y.F., Xiang Y., Huang J.H., Savini G., Parisi V., Yang W.J., Fu X.A. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 2014 Jan; 9(1): e85718, http://dx.doi.org/10.1371/journal.pone.0085718.
  91. Tsironi E.E., Dastiridou A., Katsanos A., Dardiotis E., Veliki S., Patramani G., Zacharaki F., Ralli S., Hadjigeorgiou G.M. Perimetric and retinal nerve fiber layer findings in patients with Parkinson’s disease. BMC Ophthalmol 2012 Oct; 12: 54, http://dx.doi.org/10.1186/1471-2415-12-54.
  92. Satue M., Seral M., Otin S., Alarcia R., Herrero R., Bambo M.P., Fuertes M.I., Pablo L.E., Garcia-Martin E. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol 2014 Mar; 98(3): 350–355, http://dx.doi.org/10.1136/bjophthalmol-2013-304152.
  93. Garcia-Martin E., Larrosa J.M., Polo V., Satue M., Marques M.L., Alarcia R., Seral M., Fuertes I., Otin S., Pablo L.E. Distribution of retinal layer atrophy in patients with Parkinson disease and association with disease severity and duration. Am J Ophthalmol 2014 Feb; 157(2): 470–478.e2, http://dx.doi.org/10.1016/j.ajo.2013.09.028.
  94. Schneider M., Müller H.P., Lauda F., Tumani H., Ludolph A.C., Kassubek J., Pinkhardt E.H. Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm 2014 Jan; 121(1): 41–47, http://dx.doi.org/10.1007/s00702-013-1072-3.
  95. Shrier E.M., Adam C.R., Spund B., Glazman S., Bodis-Wollner I. Interocular asymmetry of foveal thickness in Parkinson disease. J Ophthalmol 2012; 2012: 728457, http://dx.doi.org/10.1155/2012/728457.
  96. Altintaş O., Işeri P., Ozkan B., Cağlar Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 2008 Mar; 116(2): 137–146, http://dx.doi.org/10.1007/s10633-007-9091-8.
  97. Adam C.R., Shrier E., Ding Y., Glazman S., Bodis-Wollner I. Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol 2013 Jun; 33(2): 137–142, http://dx.doi.org/10.1097/WNO.0b013e31828c4e1a.
  98. Bambo M.P., Garcia-Martin E., Otin S., Sancho E., Fuertes I., Herrero R., Satue M., Pablo L. Influence of cataract surgery on repeatability and measurements of spectral domain optical coherence tomography. Br J Ophthalmol 2014 Jan; 98(1): 52–58, http://dx.doi.org/10.1136/bjophthalmol-2013-303752.
  99. Smetankin I.G., Agarkova D.I. Confocal microscopy and optical coherent tomography for evaluation of the anatomical and functional state of corneal wound (in vivo) after cataract phacoemulcification. Sovremennye tehnologii v medicine 2012; 3: 89–92.
  100. Hood D.C., Raza A.S. On improving the use of OCT imaging for detecting glaucomatous damage. Br J Ophthalmol 2014 Jul; 98(Suppl 2): ii1–ii9, http://dx.doi.org/10.1136/bjophthalmol-2014-305156.
  101. Rao H.L., Addepalli U.K., Yadav R.K., Senthil S., Choudhari N.S., Garudadri C.S. Effect of scan quality on diagnostic accuracy of spectral-domain optical coherence tomography in glaucoma. Am J Ophthalmol 2014 Mar; 157(3): 719–27.e1, http://dx.doi.org/10.1016/j.ajo.2013.12.012.
  102. Chhablani J., Krishnan T., Sethi V., Kozak I. Artifacts in optical coherence tomography. Saudi J Ophthalmol 2014 Apr; 28(2): 81–87, http://dx.doi.org/doi:10.1016/j.sjopt.2014.02.010.
Svetozarskiy S.N., Kopishinskaya S.V. Retinal Optical Coherence Tomography in Neurodegenerative Diseases (Review). Sovremennye tehnologii v medicine 2015; 7(1): 116, https://doi.org/10.17691/stm2015.7.1.14


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg