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The aim of the investigation was to develop the neuro-integrated control system for a lower-limb robotic exoskeleton (RE) using 
brain–computer interface (BCI) technology based on recognition of EEG patterns evoked by motor imagery of limb movement.

Materials and Methods. The proposed neuro-integrated RE control system based on BCI technology consists of three main modules: 
EEG signal recording module, EEG signal classifier and the software for transmission of commands to RE. EEG patterns evoked by motor 
imagery are recognized by the classifier based on linear discriminant analysis that uses the features identified by spatial filtering applying 
CSP method for all types of commands pairwise. The proposed algorithms for classification of motor imagery patterns and user training 
techniques make it possible to reliably distinguish several (up to 4) different commands. After training and testing the classifier, the operator 
may proceed to control the external device, i.e. the lower-limb RE. RE control software has been developed for easy system customization. 
The software has a simple graphical user interface and allows the user to change the mapping of RE patterns and commands in the 
operation process.

Results. As a result of testing in 14 healthy volunteers, the average accuracy of lower limb exoskeleton control based on the developed 
motor imagery BCI for three commands was found to average 70% in three sessions.

Conclusion. The developed RE control system based on BCI technology offers fairly high accuracy for three commands. The operators 
successfully learn to practice motor imagery and operate the BCI contour, even if they have no previous experience of work with brain–
machine interfaces.
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Exoskeleton Control System Based on Motor-Imaginary Brain–Computer Interface

Today, one of the fastest growing areas of medical 
technology is development and manufacturing of 
neuro-integrated devices based on brain–computer 
interface (BCI) technology combined with the use of 
robots (orthoses, exoskeletons) for neurorehabilitation 
purposes [1, 2]. The impetus for this growth was the 
discovery of training-induced plastic changes in the 
functional topography of the primary motor cortex [3]. 
It is shown in the studies by Bach-Y-Rita and Taub [4, 
5] that movement can be recovered even several years 
after stroke. This has provided new opportunities for 
neurorehabilitation: the strategy of intensive, regular 
and motivated movement training has been developed 
[6]. Exoskeletons appeared to be ideal technical devices 

for this strategy implementation. Different types of 
exoskeletons have already been actively used in the 
clinic and the number of these developments has been 
growing exponentially in the last 10 years [7].

Exoskeletons used successfully for neurorehabilitation 
involve devices reproducing the movements of the upper 
limb joints [8] and devices focused on simulation of 
walking. Among the latter, we can distinguish exoskeletons 
performing biomechanically correct movements in 
the hip and knee joints of the patient such as LOPES 
(lower extremity powered exoskeleton) [9], ALEX 
(active leg exoskeleton) [10], ReWalk (wearable robotic  
exoskeleton) [http://rewalk.com/], eLEGS (exoskeleton 
lower extremity gait system) [http://bleex.me.berkeley.edu/
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research/exoskeleton/elegs], Rex (robotic exoskeleton) 
[http://www.rexbionics.com/], MINDWALKER [11] and 
others.

Despite the fact that currently there are several types 
of BCI known [12, 13], the most popular types of non-
invasive BCI to control exoskeletons are the so-called 
synchronous BCIs based on registration of the operator 
EEG response to the external stimulus environment. 
They involve resonance frequency BCIs based on the 
well-known property of spontaneous EEG rhythms to 
adapt the resonance frequency to external sources of 
rhythmic stimulation [14] and P300 wave-based BCIs 
operating on the principle of detecting the P300 wave 
of the induced potentials in response to the stimuli 
(symbols) intended by the user [15, 16]. The accuracy 
of detecting commands in such BCIs amounts to 
95–97% [17], but at the same time, the operator’s 
attention should be always focused on the matrix 
stimulus environment. Examples of applying resonance 
frequency BCIs for controlling lower-limb robotic 
exoskeletons (REs) are MindWalker [11], the Korean 
lower-limb exoskeleton [18].

Unlike synchronous BCIs, in asynchronous motor 
imagery based BCI technology (MI–BCI — motor 
imagery based brain–computer interface), detected as 
commands for controlling EEG rhythm changes are 
invoked by the arbitrary efforts of the human operator 
irrespective of any external sensory stimulation. Despite 
the fact that this BCI type is quite difficult to master 
compared to resonance frequency and P300 wave-
based BCIs, exactly motor imagery BCI is considered to 
be the most promising for training motor function [1, 19, 
20]. The operating principle of motor imagery based BCI 
is detecting desynchronization of sensorimotor rhythms 
in the motor area of the cerebral cortex contralateral 
to the motor act when the operator elicits motor act 
imageries such as grasping, moving the fingers and other 
movements [21]. It has been shown that even patients 

with paresis of the extremities are able to successfully 
imagine various movements of paralyzed body parts [22]. 
BCI-RoGO [23] and NeuroRex [24] are the examples of 
using such BCI for controlling exoskeletons. 

It is important to underline that recently there have 
been published successful results of the study on the 
rehabilitation of people with paraplegia caused by spinal 
cord lesions using motor imagery based BCI technology 
[25]. The rehabilitation protocol included comprehensive 
training with controlling the virtual reality scenario, lower-
limb exoskeleton, tactile feedback and locomotor activity 
through BCI technology.

The aim of the investigation was to develop neuro-
integrated control system for a lower-limb robotic 
exoskeleton based on recognition of EEG patterns using 
motor imagery brain–computer interface technology.

Materials and Methods. The experimental study 
involved 14 healthy subjects (6 males and 8 females 
aged 18 to 23 years) who were informed about the 
terms and conditions of the experiment before it started 
and provided written informed consent for participation. 
The study protocol was approved by the Bioethics 
Committee of Lobachevsky State University of Nizhni 
Novgorod. The experiments were carried out without 
wearing the exoskeleton by the operator. During the 
experiment, the exoskeleton was on the stand near the 
operator and performed movements with the left and 
right foot depending on the EEG pattern generated by 
the operator (See Media https://drive.google.com/file/
d/0BzOUw8ncip3md1dPdzZmZmtka3c/view).

The developed neuro-integrated RE control system 
based on BCI technology consists of three main modules: 
EEG signal recording module, EEG signal classifier and 
the software for transmission of commands to RE.

EEG signal recording module. EEG signals were 
recorded using the certified NVX 52 amplifier (LLC 
“Medical Computer Systems”, Russia). Eight leads 
were used to record EEG (FCz, C5, C3, C1, Cz, C2, 

Figure 1. The diagram of training 
and testing the classifier in 
the contour of motor imagery 
brain–computer interface; layout 
diagram of the electrodes used 
in the experiment 
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C4, C6), arranged according to the international 10-10 
scheme (Figure 1). The reference electrode was placed 
on the left ear lobe. The grounding electrode was on the 
forehead. The signal digitization frequency was 500 Hz. 
Resistance under the electrodes did not exceed 10 kΩ. 
The signal was filtered in the range of 6 to 15 Hz with 
Notch filter of 50 Hz.

EEG signal classifier. The experimental procedure 
of operating the BCI-controlled RE consisted of three 
consecutive sessions: the training session, the test 
session, and controlling session. Training and testing 
sessions were used for the initial setup and testing the 
classifier, respectively.

During the classifier training, the operator performed 
one of three commands: rest when the monitor image 
of the cross appeared, left or right hand motor imagery 
movements when “left/right” arrow was seen on the 
monitor. The operator was asked to choose any hand 
movement considered comfortable for imagery. The 
exemplary movements were finger movements and 
rotating a hand in the wrist joint. The “rest” command 
meant that the operator had to sit still concentrating on 
breathing. Each 5-second command was presented 
10 times. The inter-stimulus interval was 3 s (empty 
screen). The stimuli were presented randomly. The 
classifier training duration amounted to 4 min. While 
presenting the stimuli, EEG was recorded using NeoRec 
software (LLC “Medical Computer Systems”, Russia) 
which transmitted the received signal according to the 
LSL protocol. The transmitted signal was read as a 
script written in the Python language (www.python.org) 
which controlled the synchronization between the stimuli 
presentation and the EEG signal.

To control the success of mastering the motor 
imagery technique, the degree of sensorimotor 
rhythm desynchronization was assessed. When the 
stimuli presentation was completed, spatial filtering 
was applied to improve the obtained EEG recording 
in all the channels (Surface Laplacian method [26]). 
Afterwards, the power in the frequency range from 6 
to 15 Hz with a step of 1 Hz was calculated for each 
data set corresponding to the stimulus type in each 

channel separately. The rate of power change relative 
to “rest” was calculated for the records corresponding 
to motor imagery. The results were mapped (Figure 2). 
When spectral power decreased (desynchronization) 
by more than 50% during motor imagery, the operator 
was considered to have successfully mastered motor 
imagery technique and proceeded to the test session 
of the classifier. In case of several failed attempts, the 
procedure was repeated with the change of motor 
imagery type.

When testing the classifier, the results of mental 
task recognition were provided to the operator by 
visual feedback: a green scale beginning at the circle 
in the screen center where the subject fixed the eyes 
filled down to the edge of the screen if the classifier 
recognized the task in agreement with the given 
command and the scale stopped filling when another 
task was recognized (See Figure 1).

Recognition was performed by the classifier based on 
linear discriminant analysis using the features identified 
by spatial filtering with CSP method [27] for all types of 
commands pairwise. The solutions of paired classifiers 
were summarized by “voting”.

After the classifier training and testing, the operator 
could start controlling the external device, i.e. the 
lower-limb RE [28]. The operator was asked to choose 
one of three commands (left or right hand motor 
imagery movements and rest). The classifier analyzed 
EEG recording every 4.5 s, made a conclusion and 
transmitted the command chosen by the operator to the 
external device.

The software for transmission of commands to 
robotic exoskeleton. Figure 3 shows the software 
operation diagram.

BCI classifier software and RE control system 
software are installed on a personal computer running 
Windows operating system. Web service controlling the 
exoskeleton is run on the microcomputer built in it and 
powered by Linux-compatible operating system. Data 
transfer between the computer and the exoskeleton is 
carried out through a wireless Wi-Fi channel.

RE control system based on motor imagery BCI works 

а b

Figure 2. Exemplary topographic 
mapping of EEG desynchronization 
degree for one operator:
(a) left hand motor imagery movement; 
(b) right hand motor imagery 
movement; the maps are presented 
for desynchronization at 13 Hz 
frequency; the dark color corresponds 
to the maximum de-synchronization, 
the light color means the minimum de-
synchronization
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Figure 3. The diagram of robotic exoskeleton control system based on motor imagery brain–computer interface

Figure 4. Graphical user interface of robotic exoskeleton control software

as follows. As described above, EEG operator data are 
transferred from NVX 52 amplifier to the classifier in 
the LSL format. Every 4.5 s the number of the pattern 
recognized by the classifier is placed in the User 
Datagram Protocol (UDP) and sent via Transmission 
Control Protocol (TCP)/Internet Protocol (IP), to RE 
control software. For easy system customization, the 
authors have developed original RE control software. 
The software has a graphical user interface and allows 
the user to change the mapping of RE patterns and 
commands in the operation process (Figure 4). The 

program is written in C++ using the Qt library (https://
www.qt.io/).

Using a pre-set correspondence between the pattern 
number and exoskeleton command, RE control software 
sends a request to the web service of the exoskeleton 
to perform the relevant command. The web service of 
the exoskeleton is a program run on the BeagleBoard-
xM microprocessor board coming with Angstrom Linux 
Distribution. The web service interface is implemented 
using the gSOAP code generator (https://www.cs.fsu.
edu/~engelen/soap.html) and provides the ability to run 

movement patterns of the exoskeleton 
limbs. A total of 10 patterns have been 
implemented (stand up; sit down; bend/
extend the right leg; bend/extend the 
left leg; vertical; embryo; walk). Each of 
the patterns implements the algorithm 
of synchronous control over a group 
of 4 actuators. Actuator parameters 
are the limiting angles at which the 
movement in the corresponding joints 
is terminated and the maximum torque 
provided on the actuator shafts of the 
joints when movement is performed.

The following associations of 
patterns and commands were used for 
the exoskeleton:

pattern 1 (left limb motor imagery 
movement) — flexion/extension of the 
left leg of the exoskeleton;

pattern 2 (right limb motor imagery 
movement) — flexion/extension of the 
right leg of the exoskeleton.

Results. The results of the 
operator’s work were used to calculate 
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the average accuracy of the skeleton control based on 
the given BCI as the ratio of the total number of correctly 
entered commands to the total number of attempts. 
Each operator was given 10 attempts for each command 
in each session.

The results of testing on 14 volunteers (See the 
Table) showed that the average control accuracy of 
the developed motor-imagery BCI is 73, 71, and 66%, 
respectively, for three commands in the sessions. 
Evidently, the average accuracy of choosing commands 
does not vary greatly in different sessions. It is also 
interesting to note that individual indices of accuracy in 
testing the classifier predict (correlation coefficient =0.8) 
further assessment of skeleton operation accuracy. 
Notably, some subjects (about one third) definitely 
achieved fairly high accuracy (90% and more).

In future, we plan to test the developed control system 
in experiments with wearing the exoskeleton by healthy 
people and people with severe motor disabilities and 
to develop individual operator training techniques to 
achieve higher accuracy of control.

Conclusion. The developed control system for 
a robotic exoskeleton (a lower-limb exoskeleton) 
based on motor imagery brain–computer interface 
offers rather high accuracy for three commands. As a 
robotic rehabilitation device, it can be used for active 
electromechanical assistance to movements in patients 
with severe motor disabilities, for development and 
training of impaired postural functions in patients with 
disorders affecting the functioning of motor centers and 
neural signal conductivity of the spinal cord with clinical 
presentation of partial or complete paraplegia (stroke, 

traumatic brain injury, spinal cord injury, cerebral palsy 
and other diseases).
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grant of the Russian Science Foundation (project No.15-
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