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Intraoperative recording of cortico-cortical evoked potentials (CCEPs) enables studying effective connections between various 
functional areas of the cerebral cortex. The fundamental possibility of postoperative speech dysfunction prediction in neurosurgery based on 
CCEP signal variations could serve as a basis to develop the criteria for the physiological permissibility of intracerebral tumors removal for 
maximum preservation of the patients’ quality of life.

The aim of the study was to test the possibility of predicting postoperative speech disorders in patients with glial brain tumors by using 
the CCEP data recorded intraoperatively before the stage of tumor resection.

Materials and Methods. CCEP data were reported for 26 patients. To predict the deterioration of speech functions in the postoperative 
period, we used four options for presenting CCEP data and several machine learning models: a random forest of decision trees, logistic 
regression, and support vector machine method with different types of kernels: linear, radial, and polynomial. Twenty variants of models 
were trained: each in 300 experiments with resampling. A total of 6000 tests were performed in the study.

Results. The prediction quality metrics for each model trained in 300 tests with resampling were averaged to eliminate the influence 
of “successful” and “unsuccessful” data grouping. The best result with F1-score = 0.638 was obtained by the support vector machine with 
a polynomial kernel. In most tests, a high sensitivity score was observed, and in the best model, it reached a value of 0.993; the specificity 
of the best model was 0.370.

Conclusion. This pilot study demonstrated the possibility of predicting speech dysfunctions based on CCEP data taken before the 
main stage of glial tumors resection; the data were processed using traditional machine learning methods. The best model with high 
sensitivity turned out to be insufficiently specific. Further studies will be aimed at assessing the changes in CCEP during the operation and 
their relationship with the development of postoperative speech deficit.

Key words: cortico-cortical evoked potentials; machine learning; artificial intelligence; neuro-oncology; glial tumors; speech function; 
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Models for Predicting Speech Disorders

Introduction

One of the main tasks of modern brain science is to 
identify the structural and functional neural networks 
that maintain human cognitive functions. Identifying 

and preserving these networks during an operation is 
the most difficult and not completely solved problem of 
brain tumor neurosurgery. The analysis of intracerebral 
connections has become so significant that it is regarded 
as a new field of research called Brain Connectomics [1].
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Connectomics considers the brain as a complex of 
elements (cortical regions, subcortical nuclei) united by 
three types of connectivity — structural, functional, and 
effective.

Effective connectivity is a directed flow of information 
between nerve structures [2, 3], which makes them work 
as a “signal source–signal receiver” system. Intravital 
examination of the effective connections is a challenging 
multidisciplinary problem, which is approached by 
intraoperative recording of cortico-cortical evoked 
potentials (CCEP) [4].

In the present study, to predict speech deterioration in 
the early postoperative period, we analyzed the CCEP 
recorded during surgery for brain glial tumor removal. 
The hypothesis tested by us was that the CCEP 
parameters measured before the main stage of surgical 
intervention could serve as predictors for worsening of 
the postoperative speech function. Confirmation of this 
hypothesis may become the basis for the development 
of criteria for the physiological feasibility of removing 
intracerebral tumors in order to maximize the patients’ 
quality of life.

Materials and Methods
This prospective study included consecutive patients 

with intracerebral tumors located in the speech-dominant 
hemisphere, in close proximity to Broca’s and/or 
Wernicke’s speech areas, while the tumors’ medial part, 
according to preoperative MRI tractography, extended to 
the fibers of the arcuate fasciculus.

Before surgery, all patients were examined using a 
Signa HDxt 3.0T tomograph (GE Healthcare, USA). The 
MRI examination protocol included MRI scans run in the 
standard modes (T1-WI, T1 + C, 3D-T1-WI, T2-FLAIR, 
DWI), MRI tractography, and fMRI.

Before the surgery and 7 days after it, neurological 
and neuropsychological examinations were performed 
according to the Luria’s method. The preservation of 
speech function was assessed.

Microsurgical removal of the tumor was performed 
using craniotomy (the patient remained conscious) 
according to the protocol of monitored sedation. The 
study was conducted in accordance with the principles 
of the Helsinki Declaration (2013); informed consent was 
obtained from each patient.

CCEP recording. Intraoperative recording of CCEP 
[5–7] was carried out using a 32-channel Neuro-IOM 
intraoperative monitoring system (Neurosoft LLC, 
Russia) and a pair of subdural electrode strips. The 
recorded CCEP data were processed by the original 
software developed by Neurosoft LLC as well; that 
guaranteed full compatibility between the recording 
systems and the data formats.

One of the two electrodes was placed in the frontal 
speech area (Broca’s area), the second was placed on 
the surface of the superior temporal gyrus in its posterior 
sections and on the supramarginal gyrus.

The CCEP data were recorded before and after the 
tumor resection, by averaging the evoked responses 
(30–50 stimuli per session) with an electrocorticogram 
analysis epoch of 300 ms, starting from the stimulus 
onset. To confirm the reproducibility of the response, at 
least two averaged curves were recorded each time.

Electrocorticography (ECoG) was performed with a 
quantization frequency of 20 kHz. Pass filters were set 
within 5–1000 Hz. Measurements from the subdural 
electrode were performed in the monopolar mode; 
a spiral subcutaneous electrode placed in the area of the 
contralateral mastoid process or in the frontal area was 
the reference.

Under conditions of bipolar montage, electrical 
stimulation of the cortex was performed using two 
adjacent contacts of the subdural electrode. The 
stimulation mode included single rectangular biphasic 
DC pulses with a duration of 300 μs and a frequency 
of 1 Hz. The stimulus intensity was raised gradually, 
starting from 2 mA, until the appearance of the 
paraphasic phenomena or epileptiform patterns on 
the ECoG. As a rule, the intensity range of 3–4 mA 
was the most commonly used.

Data description. CCEPs were obtained intra-
operatively in 26 patients. In 14 patients, the CCEPs 
were examined before and after the main stage of 
surgical intervention, in the remaining 12 patients — 
before the main stage only. Each CCEP test was saved 
in a separate European Data Format (EDF) file that 
included ECoG waveform data in 8 or 16 channels. The 
number of tests for each patient was not limited — there 
were from 2 to 16 CCEP tests per patient.

The dataset obtained in this way after testing 26 
patients included numerous files (n=268, 1 file for 
each test), of which 216 files contained CCEP data 
before surgery, and 52 files — after it (Figure 1). All 
the data obtained were analyzed independently by two 
neurophysiologists in order to assess the quality of 
ECoG recordings. Then, using the due software, the 
data were sorted into unsuitable and suitable for further 
analysis. After screening out low-quality records, 138 
tests remained; of those, 105 related to the CCEP data 
obtained before surgery and 33 — after it.

The number of tests conducted in each patient is 
shown in Figure 2. Due to the small number of complete 
data sets (before and after surgery), by now, our analysis 
is limited to preoperative CCEPs only (n=105).

Signal preprocessing. To start the CCEP recording 
procedure, a single stimulus of 300 μs was applied. 
The duration of signal recording after stimulation was 
300 ms. The analog signal was converted into the digital 
one at a sampling rate of 25,000 samples per second, 
therefore, each signal consisted of 7500 discrete values.

An individual patient test included ECoG data 
obtained via 8 or 16 channels. For all tests, the 
data were converted to the identical format. Most of 
the recorded curves appeared in the form of impulse 
noises with signal oscillations at very low amplitudes; 
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therefore, it was decided to analyze the data obtained 
from the channel with the highest amplitude of signal 
oscillations.

Before determining the channel with the highest 
signal amplitude, the data were averaged and 
smoothed. A vector of 7500 values was divided into 
300 equal parts, 25 values each. The means of 
every 25 values formed a new vector consisting 
of 300 means. The vectors obtained for each patient 
had sharp jumps in values (spikes) throughout the 
entire signal duration. To smooth the signal, the moving 
average method with a window of n=20 was applied. 
Thus, the first 20 ms of the signal was used to calculate 
the first value of the smoothed signal. It significantly 
reduced the number of recorded artifacts. If the 
smoothed values had artifacts, they were automatically 
eliminated through the comparison with the amplitude 
of the rest of the signal multiplied by 1.25. If this value 
was exceeded, the starting index was shifted by a 
maximum of 10 values to the right. In addition, the 
signal starting index was always increased by 1 ms, 
even if no artifact was observed, in order to exclude the 
data from the first millisecond of the signal. Examples of 
averaged and smoothed signals are shown in Figure 3.

The new averaged and smoothed vectors were 
compared with each other in terms of the oscillation 
amplitude, and then the signal with the highest amplitude 
was selected. The selected signals had different 
durations due to the shift of the starting index. Time 
series analysis and indicators independent on signal 
duration were then applied.

Generation of descriptive features of the signals. 
The initial descriptive features of the signals were 
determined after consultation with an expert physician. 
These features (commonly used by neurophysiologists 
to characterize CCEP records) included signal 
amplitude, wave type, and latency to the peak (positive 
or negative) value [5, 8, 9]. For each patient, the expert 
doctor provided a description of speech dysfunctions 
before and after surgery.

For each individual test, the maximum signal 
amplitude from one of 8 or 16 channels, the average 
amplitude for all channels, and the minimum signal 
amplitude from one of 8 or 16 channels were calculated. 
Further calculations were carried out for the channel with 
the highest amplitude.

For all features of the signal, the mean value was 
calculated and used as an additional feature. This 
mean value could be a positive or negative number. 
We assumed that this indicator would be useful for the 
quality of classification.

Peak values (local extrema) were determined 
using the SciPy software package for Python 3.8.5. 
The built-in function calculated the local extrema with 
a minimum distance between peaks of 20 ms and 
a minimum peak height of 5 μV, which made it possible 
to identify extrema with a greater accuracy. In Figure 3, 
the green cross marks indicate the highs, and the red 
marks indicate the lows. Up to 2 maximum values and 
up to 2 minimum values were used for the analysis. 
The missing extremum values were restituted in two 
ways: with zeros or the mean values of the ratios of the 
first peak multiplied by the amplitude of the first peak 
to the amplitude, and for the second peak, the mean 
values of the ratios of the second peak to the first peak 
multiplied by the value of the first peak. Filling in the 

Figure 1. Number of pre- and post-surgical tests with CCEP recordings:
(a) before the dataset screening by neurophysiologists; (b) after the dataset screening by neurophysiologists
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Figure 2. Number of tests in each patient
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missing values with zeros resulted in a higher quality of 
classification.

Additionally, for each selected signal, an augmented 
Dickey–Fuller test was performed to determine the 
stationarity of the time series. The p-values obtained 
from the test were compared to the critical significance 
levels and used as a feature for the models. The data 
from the extended Dickey–Fuller test were not included 
in the final models; all the time series turned out to be 
non-stationary.

After computing the features, the MinMaxScaler 
normalization method from the sklearn package was 
applied to the data; this treatment converted the values 
to a new range from 0 to 1 and reduced the data 
dimensionality.

In this study, we used a binary classification approach. 
To this end, we created a target variable based on the 
changes in the cumulative assessment of the patient’s 
speech dysfunctions after surgery ranging from 0 to 45 
(0 is the norm). This binary target variable was set to 1 

if the speech function worsened after surgery, and to 0 if 
the speech function improved or remained unchanged 
compared to the pre-surgery state (Figure 4).

Figure 3. Examples of averaged and smoothed signals
The time scale is shown on the abscissa axis, the signal parameters — on the ordinate axis. On each 
graph, the signal starting index, as well as the minimum and maximum values are indicated. The 
first 19 ms of the signal duration was used to calculate the moving average with a window of 20 ms; 
therefore, the first signal value was noted at the 20th ms. Then the index with the first value was shifted 
to the right (for 1 ms, at least) to remove the artifact

Starting index — 21 ms, signal duration — 300 ms

Starting index — 31 ms, signal duration — 300 ms Starting index — 21 ms, signal duration — 300 ms

Starting index — 28 ms, signal duration — 300 ms
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Figure 4. Changes in the patient’ speech function after 
surgery
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Mathematical models for the purpose of 
prediction. To predict the deterioration of the speech 
functions in the postoperative period, several machine 
learning models were used: a random forest (RF) of 
decision trees, logistic regression (LR), support vector 
machine (SVM) with different types of kernel: linear, 
radial, and polynomial (linear, Lin; radial basis function, 
RBF; polynomial, Poly).

Each test was performed after randomly sampled the 
data into training (80%) and testing (20%) subsets with 
stratification. The model was trained on the training 
set; then, 5-fold cross-validation (CV) was applied to 
evaluate the model’s quality before running it on the 
test set.

The data were divided into the testing and training 
subsets in two different ways. In the first method, the 
division was made over the entire range of the tests 
(n=105). In the second method, the division was carried 
out so that all the tests of a given patient fell into only 
one sample. Thus, if a patient underwent 6 tests, they 
would all fall into either the training or test set. This 
option for grouping the data by patient was based on the 
assumption that all tests of one patient were similar to 
each other and could led to the overfitting of the machine 
learning model.

In total, 4 variants of the input data were used:
1) data division by tests with filling in the missing 

values with mean values;
2) data division by tests with filling in the missing 

values with zeros;
3) data division by patients with filling in the missing 

values with mean values;
4) data division by patients with filling in the missing 

values with zeros.
For all four types of the input data, a few series 

of tests were carried out using each of the 5 machine 
learning models. Thus, 20 variants of the models were 

trained 300 times in these series of tests, which led to a 
total number of 6000 test runs.

Results
We used standard metrics to evaluate the test 

results: accuracy on validation samples within the 
cross-validation (CV), specificity, and sensitivity (Spec 
and Sens, respectively), the proportion of correct 
classifier responses (Acc), precision and recall (Prec 
and Rec, respectively), F1-score and the area under the 
ROC-curve (area under curve, AUC).

The results for each series of 300 tests were averaged 
over all metrics to eliminate the influence of successful 
and unsuccessful data sets.

The results of the tests carried out with the first two 
variants of the input data are presented in Table 1. 
Comparison by the F-measure indicates that 3 out of 
5 models showed an improvement in the quality of 
classification upon filling in the missing values with 
zeros.

With the 3rd and 4th variants of the input data, we used 
the division by patients — all tests of each individual 
patient fell into one of two samples: training or testing 
(Table 2).

The F1-score comparison shows an improvement in 
the quality of classification for all 5 models when filling in 
the missing values with zeros.

Classification under the division by patients (see 
Table 2) produced significantly lower results as 
compared with the division by tests (see Table 1), which 
indicated the involvement of a model overlearning factor. 
The results in Table 1 were not considered for the final 
comparison with the results of other models.

The best result for the F1-score metric was 0.638 for 
the SVM (Poly) model when filling in the missing values 
with zeros.

T a b l e  1
Classification results obtained upon dividing the data by tests

Model CV Spec Sens Prec Rec Acc F1-score AUC
Filling in missing values with the mean values

RF 0.743 0.535 0.880 0.756 0.708 0.765 0.713 0.708
LR 0.725 0.240 0.993 0.812 0.617 0.742 0.603 0.617
SVM (Lin) 0.706 0.220 0.983 0.726 0.602 0.729 0.579 0.602
SVM (RBF) 0.754 0.303 0.995 0.831 0.649 0.764 0.645 0.649
SVM (Poly) 0.756 0.300 0.999 0.841 0.650 0.766 0.645 0.650

Filling in missing values with zeros
RF 0.751 0.559 0.877 0.761 0.718 0.771 0.723 0.718
LR 0.724 0.237 0.996 0.807 0.617 0.743 0.601 0.617
SVM (Lin) 0.704 0.226 0.977 0.728 0.602 0.727 0.582 0.602
SVM (RBF) 0.756 0.293 0.995 0.838 0.644 0.761 0.640 0.644
SVM (Poly) 0.759 0.348 0.992 0.842 0.670 0.777 0.671 0.670

Models for Predicting Speech Disorders
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In most tests, a high sensitivity index was observed, 
and for the best SVM model (Poly), it reached 0.993. 
Thus, the model made correct predictions in 99.3% of 
patients with speech deterioration after surgery. At the 
same time, only 37% of patients with improvement/
preservation of speech functions were correctly identified 
by the model. Along with the fact that the identification 
of patients at risk of speech deterioration was a top 
priority of the study, attributing some of the patients with 
speech improvement to the risk zone reduced the overall 
accuracy of the algorithm.

Discussion
Attempts to determine the response of the cortex 

(local cortical response) and other brain structures to 
stimulation by a single electrical stimulus have been 
made since the 1960s and predominantly involved 
animal studies [10–12].

In the late 80s and early 90s, the first reports on 
functional connections between the temporal and limbic 
lobes as discovered with the help of evoked electrical 
potentials were published [13, 14]. In these studies, 
the response induced by stimulating brain structures at 
a distance from the stimulus electrode was detected, 
which made it possible to study the distant parts of the 
brain and their interconnections.

At the beginning of the XXI century, independently of 
each other, at the Cleveland Clinic [15], the University 
of Iowa [16], and King’s College London [17], scientists 
continued to develop methods for stimulating the 
cerebral cortex with a single impulse, as well as methods 
for analyzing the resulting evoked potentials. These 
works revived scientific interest in studying the signals, 
which are most often referred to as “cortico-cortical 

evoked potentials” (CCEP) according to the term 
introduced by the scientists from Cleveland [15].

In the present paper, an algorithm for predicting the 
deterioration or improvement/absence of changes 
in speech functions in the postoperative period was 
addressed using machine learning algorithms. According 
to the available literature, this is the first study in which 
machine learning methods were used to predict changes 
in the speech functions based on CCEP data.

According to the few published reports, researchers 
measured such CCEP parameters as the amplitude 
of signal oscillations and the latency to the signal 
peak [5, 8, 9, 18, 19]. In addition to these parameters, 
we calculated the average value over all the signal 
amplitudes, the latency to the local signal peaks (local 
extremum), and their absolute values in microvolts.

Signal preprocessing and transformation methods can 
be extended to add new features to the models, as well 
as to create new models based on these approaches. 
In the future, it is advisable to consider the methods of 
singular spectral analysis [20, 21], the use of wavelet 
transforms [22], Hilbert–Huang transforms [23], and 
other methods of working with time series [24, 25].

The limitations of this study include the relatively 
small sample size (n=26) and the insufficient number 
of patients whose post-surgical CCEP curves were 
recorded. Increasing the number of such patients may 
result in a higher quality of data classification.

Our approach to the task of classification was 
based on predicting a binary target variable: i.e. either 
deterioration or improvement in speech functions. This 
made it possible to regroup the data pool with a lower 
imbalance (see Figure 4) compared to dividing the target 
variable into several categories by the degree of speech 
impairment (in the latter case, there was a pronounced 

T a b l e  2
Classification results obtained upon dividing the data by patients

Model CV Spec Sens Prec Rec Acc F1-score AUC
Filling in missing values with the mean values

RF 0.665 0.286 0.829 0.556 0.557 0.612 0.519 0.557

LR 0.700 0.155 0.971 0.559 0.563 0.649 0.492 0.563

SVM (Lin) 0.687 0.072 0.954 0.387 0.513 0.606 0.417 0.513

SVM (RBF) 0.736 0.290 0.973 0.615 0.631 0.702 0.579 0.631

SVM (Poly) 0.751 0.297 0.985 0.618 0.641 0.708 0.587 0.641

Filling in missing values with zeros

RF 0.680 0.319 0.809 0.569 0.564 0.606 0.530 0.564

LR 0.687 0.168 0.965 0.555 0.566 0.649 0.500 0.566

SVM (Lin) 0.674 0.098 0.944 0.411 0.521 0.612 0.432 0.521

SVM (RBF) 0.730 0.324 0.973 0.649 0.649 0.716 0.604 0.649

SVM (Poly) 0.747 0.370 0.993 0.683 0.681 0.747 0.638 0.681
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imbalance between the classes). Upon increasing 
the number of patients with different grades of speech 
dysfunctions, it will become possible to classify the 
cases by severity of the disorders.

In our future work, we plan to test new methods 
for predicting speech disorders, add new descriptive 
features to the existing models, as well as develop new 
machine learning models, including the ensemble ones.

Conclusion
This pilot study demonstrated the ability to predict 

speech dysfunction developing in patients after 
brain surgery; the method is based on measuring 
cortico-cortical evoked potentials followed by data 
processing with the help of machine learning technology. 
Early detection of the speech dysfunction precursors 
according to the CCEP data can improve the results of 
surgical treatment in this functionally important area.
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