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An effective system to diagnose predisposition to development of sudden cardiac death (SCD) is required in order to determine the risk 
of developing a sudden fatal outcome well in advance of the onset thereof, including in people with asymptomatic cardiovascular disease, 
as well as to implement early preventive measures that can result in a decrease in the population mortality from cardiovascular diseases. 
Thus, the search for SCD risk markers becomes a topical issue for modern health care.

According to recent studies, epigenetic mechanisms of heredity, and DNA methylation above all, play an important role in development 
of many diseases. The review provides the results of recent foreign and Russian studies on identification of a link between DNA methylation 
and development of cardiovascular diseases being the basis for SCD (IHD, cardiomyopathies, heart rhythm disturbances). The major part 
of the review is dedicated to studying DNA methylation in IHD, which is the most epigenetically explored nosology at the moment. Attention 
is also paid to studies of the DNA methylation role in development of acute coronary syndrome and myocardial infarction, which have 
development mechanisms similar to those of SCD. There were only few studies on identification of a link between DNA methylation and 
cardiomyopathies and cardiac arrhythmias conducted, however, an association of specific genes methylation with the explored nosologies 
was revealed. The review also provides pathogenetic substantiations of the possibilities to use epigenetic markers of cardiovascular 
diseases as SCD markers.

Thus, it has been established that study of genes the methylation of which is associated with IHD (CTH, PLCB1, PTX3, MMP9, FN1, 
F2RL3, ABCB1, FOXP3, GDF15, IL6, CASR), with lipid metabolism disorders and atherosclerosis (CETP, CCL2, SREBF2, TIMP1), as well 
as with heart rhythm disturbances (SCN5A and KCNQ1), may be most promising in relation to SCD.
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DNA Methylation in Cardiovascular Diseases

Introduction

Despite a recent significant progress in prevention 
of ischemic heart disease (IHD) and cardiac failure, 
the problem of high mortality from cardiovascular 
diseases has not yet been solved [1, 2]. A large share 
(25 to 50%) in the cardiovascular mortality breakdown 
is taken by the sudden cardiac death (SCD) [1, 3]. 
According to recommendations of the European Society 
of Cardiology, the “sudden cardiac death” term should be 
used in case of a sudden lethal outcome (non-traumatic, 
unexpected death within 1 h after the onset of symptoms 
in an assumed healthy person or within 24 h from the 
moment when the deceased was last seen alive if 

the death was unwitnessed), considering the following: 
whether the past history of the deceased contains an 
indication of a congenital or acquired potentially lethal 
heart disease; whether the autopsy revealed a cardiac 
or vascular anomaly which might have caused death; 
whether autopsy revealed no extracardiac causes of 
death (in this case, arrhythmia is the most probable 
cause of the lethal outcome) [1].

The dominant SCD cause in adults is chronic 
degenerative diseases (IHD, valvular heart diseases, 
heart failure), of which IHD is the first (75%), whereas 
heart rhythm disturbances and cardiomyopathy are 
seen less often (15%) [1, 4, 5]. In younger people 
and children, SCD development is promoted by 
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cardiomyopathy, congenital heart rhythm disturbances, 
myocarditis, myocardial ischemia due to coronary vessel 
pathologies or heart failure.

Pathophysiologically, SCD may have a predisposing 
substrate (e.g., an anatomical substrate being 
regions of collagen mixed with viable cardiomyocytes 
after myocardial infarction, or a functional substrate 
represented by channelopathies in long QT syndrome), 
when there is a trigger, which develops ventricular 
tachycardia or fibrillation, less often bradyarrhythmia, 
asystole, or complete atrioventricular block [2, 6, 7]. It 
is not always possible to identify the factor that caused 
the heart rhythm disturbance even after a forensic 
medical examination of the deceased from SCD and 
a post-mortem molecular genetic study (according to 
different sources, it is possible only in 2–54% of all SCD 
instances) [1, 2, 7]. At that, almost 50% of people with 
SCD were not diagnosed with cardiovascular diseases 
during their lives [1].

The most promising measure in SCD prevention 
is stratification of individual risk of its development, 
including with the help of genetic markers [1]. Genetic 
and environmental factors contribute to the development 
of multifactorial SCD nosology. A large number of 
polymorphisms and gene mutations associated with 
SCD have been identified by the present day [8]. 
However, it is still unclear how significant genes interact 
at the cellular level in the SCD pathogenesis. The 
discovery of DNA methylation provided for studying the 
relationship between the genetic information embedded 
in the DNA sequence and the disease phenotype. 
Studies on DNA methylation can help explaining the 
mechanism of genetic information presentation in a 
disease pathogenesis.

DNA methylation
Epigenetic changes, including DNA methylation, form 

an important mechanism by which the environment can 
influence the genome. Epigenetic modifications are 
not associated with a change in the DNA nucleotide 
sequence, but they can affect gene expression and 
contribute to diseases development. During the past 
two decades, a lot of research has been conducted 
to find the connection between DNA methylation and 
cardiovascular diseases.

DNA methylation is usually considered in the context 
of a CpG dinucleotide sequence (CpG sites) and 
entails addition of a methyl group to a cytosine in this 
cytosine phosphate guanine dinucleotide [9]. In somatic 
mammalian cells, most CpG sites are methylated 
(70–90%) [10]. But CpG sites in the regions of the 
increased CpG density (CpG islands) are generally 
described as sites of the decreased methylation level. 
DNA methylation of a gene promoter is an important 
factor in regulation of gene transcription [11]. It is known 
that hypomethylation of a gene promoter increases its 
expression, while hypermethylation decreases it [12]. 

DNA methylation stabilizes chromatin structure during 
transcription and can vary greatly in different tissues and 
throughout human life [9]. Moreover, DNA methylation 
depends on age, gender, and ethnicity; this process 
is also affected by nicotine consumption [13]. In their 
systematic review, Asllanaj et al. [14] showed that the 
level of DNA methylation depends on gender, including in 
case of lipid metabolism disorders and cerebrovascular 
accidents; gender-dependent differences were 
also found in the methylation of individual genes in 
cardiovascular pathologies. According to the authors, 
this may explain the different frequency of cardiovascular 
pathologies development risks in men and women.

DNA methylation is involved in the following 
processes: X-chromosome inactivation; activity of mobile 
retro-elements; cellular differentiation; programming, 
survival, fatality, and imprinting of parental genes; 
activity of the immune system [15]. Methyltransferases, 
including DNMT1, DNMT2, DNMT3a, and DNMT3b 
are responsible for DNA methylation. DNMT3a and 
DNMT3b are responsible for de novo DNA methylation. 
DNMT1 methyltransferase is required during DNA 
replication to copy information about the methylation 
pattern from a parent strand to a daughter strand. 
Passive change in methylation status is possible only 
by silencing DNMT1 methyltransferase function. Active 
change in the methylation pattern can be achieved 
differently. Deamination converts 5-methylated cystine 
to thymine, which is corrected into unmethylated cystine 
in case of repair synthesis. Another path involves 
TET1, TET2, TET3 enzymes, which can add a hydroxyl 
group to a methyl group, converting 5-methylcytosine 
to 5-hydroxymethylcytosine, cleaved by thymine DNA 
glycosylase. Regardless of the existing mechanisms, 
DNA methylation of CpG sites is stable for the majority 
of tissues [16]. In case of methylation, gene expression 
can be changed differently. The first way to block gene 
expression involves inability of transcription factors and 
DNA to interact in case of methylated CpG sites [15]. 
The second way provides for interaction with the methyl 
binding domain proteins methylated by CpG sites, 
including MCP2, MBD1, MBD2, MBD4, which transcribe 
CpG site methylation and thus stop or suppress 
transcription [10].

There are several major approaches to studying 
DNA methylation: measuring the global level of DNA 
methylation; study of methylation of specific candidate 
genes; epigenome-wide analysis of DNA methylation, 
including epigenome-wide association studies (EWAS) 
[17]. The accumulated knowledge suggests that 
epigenetic alterations, such as DNA methylation 
pathologies, may help reveal an alternative explanation 
for the pathophysiology of a cardiovascular disease [18]. 
In addition to methylation of specific genes associated 
with development of a particular disease, the level of 
genome-wide methylation is also explored, including 
with the help of modern next-generation sequencing 
technologies [19]. Genome-wide association studies 
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identified many single nucleotide polymorphisms 
localized in non-coding segments, but still associated 
with diseases. It is assumed that epigenetic mechanisms 
can explain some of the mentioned results [20].

There were many studies related to DNA methylation 
for each cardiovascular phenotype. In a number of 
instances (for example, in case of atherosclerosis, 
IHD), diagnostic markers of the disease development, 
severity, and prognosis were determined. There were 
no articles on studying DNA methylation in SCD found 
in the available world literature, except for our pilot 
study [21], which showed that methylation of the 
ABCA1 gene promoter is associated with SCD. It is 
known that the ABCA1 (ATP binding cassette subfamily 
A member 1) gene encodes the protein related to 
cholesterol transportation. Gene inactivation by the 
gene promoter methylation is associated with the IHD 
development being the most frequent SCD substrate for 
the middle-aged and the elder [22].

DNA methylation and ischemic heart disease

The most explored nosology in relation to DNA 
methylation is ischemic heart disease [5]. The 
association of the disease with the global DNA 
hypermethylation is established. The researchers found 
a large number of genes the methylation of which is 
associated with IHD, including myocardial infarction and 
acute coronary syndrome (ACS). Some of these genes 
have been recently found (see Appendix 1). For instance, 
Sharma et al. [23] identified 72 hypermethylated regions 
in individuals with IHD as well as 6 CpG sites, including 
the intronic region of the C1QL4 gene, control elements 
of the CCDC47 and TGFBR3 genes, the methylation of 
which is associated with this disease. A genome-wide 
methylation in patients with IHD study identified critical 
genes (ABCA1, DDAH2) and sequences (LINE-1 and 
Alu), the methylation of which is also associated with 
the risk of this pathology development. LINE-1 and Alu 
are large, high-copy retrotransposons of the human 
genome. The level of these elements’ methylation differs 
significantly in patients with IHD and people from the 
control group [24, 25].

A case-controlled study in a group of patients with 
IHD (178 people) and a control group (156 people) 
demonstrated the association of the examined nosology 
with the CTH gene promoter methylation [26]. The 
CTH (cystathionine gamma-lyase) gene encodes 
a cytoplasmic enzyme that converts cystathionine 
to cysteine. The rs113044851 insertion-deletion 
polymorphism of this gene was found to reduce the risk 
of SCD [27]. Therefore, the CTH gene can be considered 
as a candidate gene for susceptibility to SCD. Guo et al. 
[28] showed that the level of PTX3 (pentraxin 3) gene 
methylation (this gene plays a role in the development 
of inflammation and atherogenesis) is significantly 
lower in the IHD group compared to the control group. 
The PTX3 gene encodes a protein the expression 

of which is induced by inflammatory cytokines in 
response to inflammation; this protein is also involved 
in angiogenesis and tissue remodeling. Several studies 
demonstrated a rapid increase in the concentration 
of the PTX3 protein in the blood plasma in patients 
with ACS. For instance, Tajo et al. [29] measured the 
level of PTX3 in individuals who died from a fatal ACS 
and in those who died differently. It turned out that the 
PTX3 concentration was higher in the ACS group with 
coronary thrombosis compared with the control group 
and the ACS groups with coronary stenosis and the 
heart tissue alterations typical of myocardial infarction. 
During a three-year follow-up [30], it was shown that the 
level of PTX3 in the blood of patients with the chronic 
heart failure is also higher compared to that of healthy 
individuals and correlates with the severity of the heart 
failure according to NYHA. Moreover, it was found 
that in patients with the developed endpoints (cardiac 
death, repeated hospitalization, higher severity of the 
disease) the level of PTX3 in blood plasma is higher 
than in individuals without such endpoints [30]. Thus, 
studying of the PTX3 gene methylation in SCD may be 
a promising region of research when getting a positive 
result is highly probable as this gene is involved in 
angiogenesis and tissue remodeling, the PTX3 promoter 
methylation association with IHD was shown, and there 
is information of a link between the level of its protein 
with ACS (including fatal ACS) and chronic heart failure 
(including its outcomes resulted in cardiac death).

According to the case-controlled study [31], 
hypomethylation of the COMT gene promoter is 
associated with an increased risk of IHD in men. The risk 
of IHD development, and especially acute myocardial 
infarction, also increases with hypomethylation of the IL6 
gene promoter [32]. Methylation of the GCK, GALNT2, 
TNNT1, PLA2G7, MMP9, FOXP3, ANGPTL2, and 
ABCG1 genes is also associated with IHD [19, 33–37]. 
The MMP9 gene (matrix metallopeptidase 9) is of interest 
from the point of view of studying methylation in SCD. 
The level of MMP-9 protein is associated with myocardial 
fibrosis in hypertrophic cardiomyopathy and the 
related cardiac events in women (syncope, ventricular 
tachycardia) [38]. Hou et al. [39] found that in the group 
of people with IHD, in whom according to coronary 
angiography the coronary artery stenosis did not exceed 
50%, the MMP-9 concentration was higher than in the 
control group and correlated with the Framingham risk 
score. In this regard, the authors suggest that MMP-9 
levels may be helpful in identification of patients at risk 
related to myocardial infarction and SCD. There is also 
data [40] on MMP-9 association with atherosclerosis 
and atherosclerotic plaque instability. Thus, the MMP-9 
protein can be a SCD marker, which makes the MMP9 
gene promising for studying methylation in case of SCD.

In 2017, a systematic review on DNA methylation 
in patients with IHD was published [17]. Based on the 
analysis of scientific articles the authors concluded 
that the contribution of global DNA methylation to the 
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IHD development is uncertain. At the same time, the 
association of some candidate genes methylation with 
IHD can be considered as confirmed (hypermethylation 
of the ESRα, ABCG1, FOXP3 genes, hypomethylation 
of the IL6 gene). The analysis of epigenome-wide 
association studies identified 84 genes that are 
differentially methylated in case of IHD (a third part of 
these genes are markers of obesity).

In 2019, an epigenome-wide association study [41] 
identified 52 CpG sites associated with IHD, some of 
which are localized in calcium regulation genes (ATP2B2, 
CASR, GUCA1B, HPCAL1) and are associated with 
atherosclerotic plaque calcification (PTPRN2) and kidney 
functioning (CDH23, HPCAL1). From the point of view of 
SCD, the study of the CASR (calcium-sensing receptor) 
gene methylation related to calcium metabolism is of 
interest. For instance, a meta-analysis of data from 
exome-wide studies on chips [42] provides information 
about several new polymorphisms associated with the 
QT interval, one of which is rs1801725 of the CASR 
gene. Long QT syndrome, in turn, is also a risk factor for 
the SCD development. According to the results of a pilot 
epigenome-wide association study [18], there were 429 
differentially methylated regions (222 hypomethylated 
and 207 hypermethylated) identified in patients with IHD 
and individuals from the control group; there was also a 
panel of loci with the most different methylation status 
created, it included mainly the genes of the HLA system 
and inflammation. Using the method of methyl-specific 
PCR, it was found that the level of methylation of the 
ABCA1 gene promoter is statistically significantly 
higher in patients with angiographically confirmed IHD 
(n=110) compared to the control group (n=110) [22]. 
In a large Russian study, the methylation status of the 
promoter regions of the TXNRD1, GSTP1, GCLM 
genes, 4–6th exons of the MPO gene in IHD, arterial 
hypertension, and acute cerebrovascular accident 
was studied. An insignificant decrease in the level of 
the GCLM and MPO genes methylation in case of IHD 
was found in comparison with the control group. In the 
event of combination of arterial hypertension and IHD, 
a decrease in the level of methylation was noted for all 
the studied genes, whereas in the event of combination 
of arterial hypertension, IHD, and acute cerebrovascular 
accident — for all genes except TXNRD1 [43]. Miao et al. 
[44] reported 11 differentially methylated loci localized in 
the BDNF, BTRC, CDH5, CXCL12, EGFR, IL6, ITGB1, 
PDGFRB, PIK3R1, PLCB1, and PTPRC genes in case of 
IHD. Only PLCB1 (phospholipase C beta 1) was studied 
out of these 11 genes in terms of association with SCD. 
For instance, our study [45] indicates an association of 
the single nucleotide polymorphism rs16994849 of the 
PLCB1 gene with SCD: the GG polymorphism genotype 
is a SCD risk genotype for persons under 50 years and 
has a protective effect for people over 50 years; AA 
polymorphism genotype has a protective effect in terms 
of SCD for persons under 50 years. It is known that an 
increase in PLCB1 gene expression is associated with 

hypertrophy of cardiomyocytes. Lin et al. [46] established 
an association of PLCB1 gene polymorphisms with the 
concentration of apolipoprotein B, total cholesterol, and 
high-density lipoprotein cholesterol in blood. Zhang 
et al. in their recent study [47] identified potential IHD 
biomarkers (FN1, PTEN, POLR3A), the expression of 
which is associated with the level of DNA methylation 
and the risk of IHD. In people with SCD, type 2 diabetes 
mellitus, and preserved ejection fraction, the expression 
of the FN1 gene (fibronectin 1) is higher than in those 
who died from other causes. The FN1 gene is known to 
be a candidate gene for IHD [48].

The KAROLA prospective cohort study [49] 
demonstrated an association of F2RL3 gene methylation 
(F2R like thrombin or trypsin receptor 3) with mortality 
in people with IHD. The F2RL3 gene encodes a 
proteinase-activated receptor which is involved into 
coagulation, inflammation, and pain response. 1206 
study participants (patients who had myocardial 
infarction, ACS, or coronary artery surgery) were 
followed up for 8 years. During this period, there 
were 64 cardiovascular deaths and 50 deaths from 
other causes. Representatives of the lowest quartile 
of the F2RL3 gene methylation showed the adjusted 
odds ratio for cardiovascular death of 2.32 compared 
to representatives of the highest quartile, but the 95% 
confidence interval (0.97–5.58) was not statistically 
significant, whereas the odds ratio and 95% confidence 
interval for non-cardiovascular death and death from all 
causes were statistically reliable.

In a more recent study [50] of F2RL3 gene methylation 
(3588 patients; 10.1 years of follow-up) conducted on 
the basis of the ESTHER project, the odds ratio for 
cardiovascular death was 2.45; the 95% confidence 
interval (1.28–4.68) was statistically significant. The 
identified association was more significant for men 
than for women. It was also shown that the F2RL3 
gene methylation is associated with smoking, which is 
a risk factor for cardiovascular events [50]. Moreover, 
an increase in the F2RL3 gene expression in case of 
IHD was reported [51]. Thus, the F2RL3 gene, which is 
related to coagulation, can be considered as a candidate 
for future studies of methylation in case of SCD, as 
methylation of this gene is associated with IHD (the main 
cause of SCD in the adult population), cardiovascular 
death, and smoking, which is also a risk factor for SCD.

Another gene of interest in relation to SCD is ABCB1 
(ATP binding cassette subfamily B member 1), the 
hypomethylation of which is associated with less aspirin 
absorption, higher platelet activity, and an increased risk 
of ischemic events (vascular death, repeated ischemic 
stroke, myocardial infarction, or transient ischemic 
attack) in people with intracranial stenosis [52].

The most severe forms of IHD are ACS and 
myocardial infarction. Arrhythmias after myocardial 
infarction and ACS often result in SCD, which in most 
cases occurs when a patient has ACS at the hospital 
stage [53]. Soares et al. [54] found that in patients with 
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ACS (190 persons) the level of global DNA methylation 
is higher compared to healthy people (75 persons) of 
the same gender and age. At that, in patients with a low 
result on the TIMI score, the level of DNA methylation is 
higher compared to patients at high and medium risk.

In the study of genome-wide methylation in ACS, 
19 hypermethylated loci and 17 hypomethylated 
genes that may be markers of ACS were identified, 
however, the association of methylation with nosology 
in the case-control study using methyl-specific PCR 
was confirmed only for the SMAD3 locus [55]. Another 
epigenome-wide study using the whole blood of 102 
patients with ACS and 101 people in the control group 
identified 47 CpG sites associated with ACS. 26 of them 
correlate with the level of expression of the corresponding 
genes, including the IL6R, FASLG, and CCL18 genes 
[56]. It has been demonstrated [34] that in patients with 
ACS, the ANGPTL2 gene, which encodes a circulating 
pro-inflammatory protein, is hypomethylated, whereas 
the level of protein in blood is increased compared to 
healthy persons of the same gender and age.

The increased methylation of the highly conserved 
region of the FOXP3 gene (FOXP3-TSDR), 
which determines regulatory T cells functioning, is 
associated with an increased risk of adverse outcomes 
(cardiovascular death, myocardial infarction, repeated 
coronary surgery) in patients with ACS and the severity 
of atherosclerosis (a decrease in regulatory T cells 
functioning and number results in its advance) [57]. 
Decreased expression and hypermethylation of the 
FOXP3 gene are seen in case of IHD [17, 58]. Thus, 
taking into account the FOXP3 gene involvement in 
development of IHD, ACS, adverse outcomes of ACS 
(including cardiovascular death), and atherosclerosis, it is 
possible to find a positive relation between methylation of 
this gene, in particular its highly conserved FOXP3-TSDR 
region, and SCD.

According to ICD-10, death from myocardial 
infarction (I21-I22) is not related to SCD (I46.1) [59], 
however, SCD is a frequent outcome of a previous 
infarction due to its recurrence or heart rhythm 
disturbances [53]. With regard to myocardial infarction, 
DNA methylation of both the genome and specific 
genes was studied. In an epigenome-wide association 
study of cardiovascular pathology conducted in Sweden 
[60], 211 differentially methylated CpG sites were 
identified in patients with myocardial infarction (196 
genes, 42 of them are associated with heart function), 
including the RYR2 and KCNN1 genes involved in ion 
transportation, and cardiogenesis genes (including 
the GDF15 gene). In a large multistage study based 
on the KORA, NAS, and InCHIANTI projects, 9 CpG 
sites altered after myocardial infarction were identified; 
these were localized in the DHCR24, KCNN1, 
ALKBH1, and LRP8 genes [61]. The LRP8 (low-density 
lipoprotein receptor-related protein 8) gene encodes a 
low-density lipoprotein receptor that also functions as 
a receptor for the ApoE protein. Some single nucleotide 

polymorphisms of the LRP8 gene are associated with 
myocardial infarction, IHD, and early unifamilial IHD 
[62, 63]. In this regard, the LRP8 gene may also be 
of interest when studying methylation in case of SCD. 
In an epigenome-wide association study conducted in 
Japan [13], the researchers found that the cg07786668 
site of the ZFHX3 gene and the cg17218495 site of 
the SMARCA4 gene are statistically significant in 
association with myocardial infarction. Single nucleotide 
polymorphisms of the ZFHX3 (zinc finger homeobox 3) 
gene are associated with atrial fibrillation, which can 
cause SCD [64].

It was demonstrated that methylation of the ALDH2 
gene promoter plays an important role in protection 
of the myocardium from ischemia; an association 
of myocardial infarction with methylation of the 
GDF15 gene was identified [65]. The GDF15 (growth 
differentiation factor 15) gene encodes the protein 
involved in the cellular stress response to an injury. 
A higher level of the GDF-15 protein increases the risk of 
SCD within 24 h after myocardial infarction [66] as well 
as after ACS [67]. Furthermore, GDF-15 is associated 
with fatal arrhythmic events and all-cause mortality in 
case of dilated cardiomyopathy [68].

Association of myocardial infarction with methylation 
of the GNAS-AS1 gene in men and women and of the 
INS-IGF2 gene in women was also demonstrated [69]. 
In an epigenome-wide case-controlled study [70] (206 
persons with myocardial infarction and 206 persons in 
the control group) based on the EPICOR project, three 
differentially methylated loci (the TCN2 gene promoter, 
the 5’UTR region of the CBS gene, the AMT gene) were 
identified in men and two (PON1 gene, 5’UTR region of 
the CBS gene) — in women, whose methylation was 
reduced due to myocardial infarction. Hypomethylation 
of the IL6 gene promoter is also associated with this 
nosology [32]. The study of 27-year-old monozygotic 
male twins discordant for myocardial infarction showed 
hypomethylation of the LDAH, APOB, ACSM2A, ACSM5, 
ACSF3, CES1, CES1P1, AFG3L2, ISCU, SEC14L2, 
MTTP genes in a twin without myocardial infarction 
(twins have the same work and have no risk factors 
associated with pathology) [71].

Thus, it is possible to identify a number of promising 
candidate genes to study methylation thereof in SCD 
from the considered genes, the methylation of which is 
associated with IHD, myocardial infarction, and ACS:

the CTH and PLCB1 genes, polymorphic variants of 
which are associated with SCD;

the PTX3 gene, as the level of the PTX3 protein in the 
blood is associated with fatal ACS related to coronary 
thrombosis, or cardiac death related to a chronic heart 
failure;

the MMP9 gene, as the protein encoded by the gene 
is considered as a potential risk marker for SCD;

the FN1 gene, the expression of which is associated 
with SCD, type 2 diabetes mellitus, and preserved left 
ventricular ejection fraction;
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the F2RL3 gene, the methylation of which is 
associated with cardiovascular death in case of IHD;

the ABCB1 gene, the methylation of which is 
mentioned in relation to a cardiac death in case of 
intracranial stenosis;

the FOXP3 gene, the methylation of which is 
associated with a cardiovascular death after ACS;

the GDF15 gene, as an increased level of GDF-15 
raises up the risk of SCD after ACS, myocardial 
infarction and in dilated cardiomyopathy;

the CASR gene, the methylation of which is 
associated with IHD (see Appendix 2).

The IL6 gene (interleukin 6), the methylation of which 
is associated with SCD and myocardial infarction, can 
also be a possible candidate gene to study methylation 
in case of SCD [17, 44]. Based on the Cardiovascular 
Health Study, more than 5000 people had their IL-6 
level measured. A 17-year follow-up of participants 
showed that the IL-6 level is associated with the risk of 
SCD [72]. The same result was received earlier on the 
basis of the PRIME study after a 10-year follow-up of 
participants [73].

DNA methylation and atherosclerosis

Atherosclerosis of the coronary vessels is a direct 
substrate of IHD, which is the most frequent cause of 
SCD. According to the Russian National Guidelines for 
Determination of the Risk and Prevention of Sudden 
Cardiac Death, high cholesterol is a minor risk factor 
for SCD, whereas prescription of statins is a preventive 
measure for SCD in patients with IHD [3]. Therefore, 
searching global scientific studies on DNA methylation 
in atherosclerosis and lipid metabolism disorders can be 
useful to find candidate genes, the methylation of which 
is associated with SCD.

The epigenome-wide association study by Hedman 
et al. [20] provided for identification of 33 CpG sites 
associated with the level of lipids (of which 25 were 
new, the methylation of which had not been previously 
associated with the lipid spectrum). One of the sites 
belongs to the SREBF2 (sterol regulatory element 
binding transcription factor 2) gene, the methylation of 
which is associated with the level of total cholesterol. 
According to the data available, the rs2228314 
polymorphism of the SREBF2 gene is associated with 
the risk of SCD [74].

Yamada et al. [75] studied postmortem DNA 
methylation in patients with atherosclerosis (n=128). 
The level of methylation was measured in pairs in 
atherosclerotic and healthy tissues of the aorta of the 
same person. There were 16 CpG sites identified which 
were located in genes not previously associated with 
atherosclerosis (FHIT, WNT8B, HOXA10, HOXC-AS2, 
ZNF609, HOXA-AS3, GDF6, TBX20, HOXA6, TUBA4A/
TUBA4B, CCDC62, MYOM2, RNASE6).

Another epigenome-wide study [76] revealed that 
methylation of the CpG site of the cg06500161 locus 

of the ABCG1 gene is associated with the levels of 
high-density lipoprotein cholesterol and triglycerides. 
The level of methylation of this locus is higher in persons 
who had myocardial infarction in history compared to 
healthy people. In addition to the ABCG1 gene locus, 
there were several CpG sites belonging to the genes 
associated with the level of triglycerides (TXNIP, 
SREBF1, CPT1A, MIR33B/SREBF1, APOA5) and 
low-density lipoprotein cholesterol (TNIP1) identified 
[76]. In atherosclerosis, triglycerides level is also 
associated with hypomethylation of the CCL2 (C-C motif 
chemokine ligand 2) gene promoter, which encodes 
a cytokine with chemotactic activity to monocytes and 
basophils as well as is involved in development of 
atherosclerosis [19]. It is known that an increase in CCL2 
gene expression in atherosclerotic plaques is closely 
correlated with SCD [77]. It was demonstrated that 
the SMAD7 gene methylation can be a new predictive 
marker and therapeutic target in case of atherosclerosis 
because the gene promoter is hypermethylated both 
in atherosclerotic plaques and in the blood of patients 
with atherosclerosis, which positively correlates with the 
level of homocysteine and the degree of atherosclerotic 
plaque progression [78].

There was a series of studies conducted in Russia to 
study DNA methylation in atherosclerosis. For instance, 
it was identified [79] that the level of LINE-1 methylation 
is significantly reduced in peripheral blood leukocytes 
in patients with clinically apparent atherosclerosis 
compared to healthy persons, and this indicator is even 
lower in carotid artery cells affected by atherosclerosis. 
Arterial wall cells from the region of atherosclerotic 
plaques of the coronary arteries are characterized by 
higher levels of methylation in the promoter region 
of the PNPLA2 gene compared to the unaffected 
wall of the internal thoracic arteries [80]. The level 
of methylation of the MIR10B and MIR21 genes in 
leukocytes of patients with atherosclerosis is higher than 
in leukocytes of the control group [81].

Some studies revealed an association of the 
SLAMF7, MIR10B, and ABCA1 genes methylation with 
atherosclerosis [82–84]. The LPL gene methylation is 
associated with high-density lipoprotein cholesterol 
level, whereas of the CETP gene — with the level 
of low-density lipoprotein cholesterol in men and 
women, and with the level of high-density lipoprotein 
cholesterol and triglycerides only in men [85]. There 
was a study conducted based on the DIABHYCAR 
project with participation of 3124 patients with type 2 
diabetes mellitus and high cardiovascular risk. It was 
identified that the TaqIB polymorphism of the CETP 
gene is associated with SCD in patients with type 2 
diabetes mellitus: the B1B1 homozygotes have a 
higher risk of SCD than carriers of the B2 allele. The 
CETP (cholesteryl ester transfer protein) gene encodes 
a plasma protein involved in the transportation of 
cholesterol from high-density lipoproteins to other 
lipoproteins [86].
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It was demonstrated that the ABCA1, ACAT1, and 
TIMP1 genes have high specificity and sensitivity for 
early diagnosis of atherosclerosis [24]. It is accepted 
that the level of the TIMP-1 protein may be a marker 
of mortality in patients with cardiac failure undergoing 
cardiac resynchronization therapy [87].

As can be seen from the above, the study of 
methylation of the CETP, CCL2, and SREBF2 genes 
may be of most interest in relation to SCD, as it is 
associated with lipid metabolism imbalances and 
atherosclerosis, whereas polymorphisms of the CETP, 
SREBF2 genes and CCL2 expression are associated 
with SCD. The TIMP1 gene is also of interest because 
the protein encoded by this gene is accepted as a 
marker of death in case of a chronic heart failure.

DNA methylation and heart rhythm disturbances

In about 40% of cases, sudden death in people 
under 35 years of age remains unexplained after a 
forensic examination. Heart rhythm disturbances, 
primarily long QT syndrome, Brugada syndrome, and 
catecholaminergic polymorphic ventricular tachycardia 
are considered to be the most likely causes of a 
sudden death. The SCD development in case of 
rhythm disturbances may be related to dysfunction 
of ion channels (impaired opening, closing, and 
functioning thereof), intracellular concentration of such 
ions as calcium, which, on the background of certain 
predisposing factors, causes rapid development of 
tachycardia or ventricular fibrillation and death [88].

DNA methylation studies were conducted for some 
heart rhythm disturbance syndromes. For instance, 
methylation of the KCNQ1 gene was studied in a cohort 
of patients with a prolonged QT interval [89].

In case of the H558R (rs1805124) polymorphism of 
the SCN5A gene in persons with Brugada syndrome, 
the level of SCN5A gene expression is higher, and its 
methylation level is lower compared to people without the 
H558R polymorphism; DNA for analysis was extricated 
from the right atrium tissue (n=30) [90]. Polymorphisms 
of the KCNQ1 and SCN5A genes, according to some 
researches, are related to development of SCD. The 
KCNQ1 (potassium voltage-gated channel subfamily Q 
member 1) gene encodes a voltage-gated potassium 
channel responsible for the repolarization phase of 
the cardiac action potential. Mutations in the gene 
are associated with development of the type 1 long 
QT syndrome or unifamilial atrial fibrillation. Single 
nucleotide polymorphisms of the gene (rs10798, 
rs8234) are associated with an increased risk of SCD 
in patients with the long QT syndrome [91]. Liu et al. 
[92] in their meta-analysis demonstrated that single 
nucleotide polymorphisms rs12296050 and rs2283222 
of the KCNQ1 gene and rs11720524 of the SCN5A 
gene are associated with SCD. The SCN5A (sodium 
voltage-gated channel alpha subunit 5) gene encodes 
an integral membrane protein being a sodium channel 

subunit. Gene mutations result in development of the 
type 3 long QT syndrome. According to Lahtinen et al. 
[93], the rs41312391 polymorphism of the SCN5A gene 
is associated with SCD.

A genome-wide study of DNA methylation [94] 
provided for identification of differentially methylated 
genes in patients with atrial fibrillation compared with 
persons with the sinus heart rhythm (primarily genes 
associated with inflammation, ion transportation, 
fibrosis, and lipid metabolism). Another epigenome-wide 
association study [9] found 7 CpG sites associated with 
atrial fibrillation located near the WFIKKN2, STRN, 
SSU72, BLCAP, DPYSL4, RBBP5, and WDR37 genes. 
The overall level of DNA methylation was significantly 
higher in the atrial fibrillation group compared to the 
sinus heart rhythm group. In case of atrial fibrillation, 
the promoter of the NPRA gene (natriuretic peptide 
receptor gene) is hypermethylated, whereas the 
expression of the gene is reduced [95]. With atrial 
fibrillation, the LINC00472 (long intergenic non-protein 
coding RNA 472) gene is also hypermethylated. It is 
accepted that its expression is associated with the 
expression of miR-24 RNA, which in turn regulates 
the expression of the JPH2 (junctophilin 2) gene 
that affects the expression of the RYR2 (ryanodine 
receptor 2) gene involved in the pathogenesis of atrial 
fibrillation. In addition to an increased level of LINC00472 
methylation, one can see an increase in the miR-24 
expression level and a decrease in the expression of 
LINC00472 [96]. Hypermethylation of the PITX2 (paired 
like homeodomain 2) gene is associated with atrial 
fibrillation [97]. The analysis of researches revealed that 
the number of group participants is low, DNA samples 
were extricated from the myocardium of the right [95] or 
left atrium [94, 96, 97], or venous blood [9].

With this regard, the study of methylation of the 
SCN5A and KCNQ1 genes (related to the long QT 
syndrome, a frequent cause of unexplained sudden 
death), polymorphisms of which are associated with 
SCD, will be the most promising approach for SCD.

DNA methylation and cardiomyopathies

The most frequent forms of cardiomyopathies 
leading to SCD include hypertrophic and dilated 
cardiomyopathies; arrhythmogenic right ventricular 
and restriction cardiomyopathies are less common. 
Pathogenetically, in case of cardiomyopathy, SCD 
can occur due to a mechanical underlying cause 
(obstruction of the outflow tract of the left ventricle 
in hypertrophic cardiomyopathy) or development of 
malignant arrhythmia (dilated cardiomyopathy). The 
“ischemic cardiomyopathy” term is also used to describe 
myocardial dysfunction caused by severe IHD [4].

One of the early studies [98] identified 51 
hypermethylated promoters and 6 hypomethylated 
promoters of genes associated with dilated 
cardiomyopathy and expression of these genes, 
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including the AURKB, BTNL9, CLDN5, and TK1 genes, 
which were not previously described as involved in 
dilated cardiomyopathy. An epigenomic association 
study provided for revealing 59 loci, the methylation 
of which was significantly associated with dilated 
cardiomyopathy [99].

In case of ischemic cardiomyopathy, hypermethylation 
of the ASB1 gene was established; the gene methylation 
status is associated with the left ventricular ejection 
fraction, stroke volume, as well as with end-systolic and 
end-diastolic size of the left ventricle [100]. Li et al. in 
their study [101] identified three more genes (SLC2A1, 
MPV17L, PLEC) with different methylation status were in 
ischemic cardiomyopathy.

Targeted bisulfite sequencing in patients with the heart 
failure related to an ischemic, dilated and hypertrophic 
cardiomyopathy revealed 195 unique differentially 
methylated regions (5 for hypertrophic obstructive 
cardiomyopathy, 151 for dilated cardiomyopathy, 55 
for ischemic cardiomyopathy). Subsequent analysis of 
expression revealed 6 genes (HEY2, MSR1, MYOM3, 
COX17, CTGF, MMP2), the expression of which is 
associated with their methylation pattern and heart 
failure [102].

Conclusion
Knowledge of gene polymorphisms and mutations 

only is not enough to understand their role in 
development of multifactorial diseases, as it does 
not provide for understanding of the ways in which 
changes in the DNA structure manifest themselves in the 
pathogenesis of the disease.

DNA methylation is an important form of epigenetic 
modification that can impact gene expression without 
changing the DNA nucleotide sequence. At that, DNA 
methylation is influenced by environmental factors, 
it depends on gender, age, and other phenotype 
characteristics, as well as lifestyle. The genes 
methylation status differs in various body tissues. DNA 
methylation is not only involved in the regular cell 
activities but may also be significant in pathogenesis of 
diseases. Therefore, epigenetic studies are extremely 
important for studying the genetic basis of diseases with 
a hereditary predisposition.

There were few studies of DNA methylation in sudden 
cardiac death conducted, but DNA methylation was 
studied for underlying diseases (IHD, cardiomyopathy, 
heart rhythm disturbances). There were papers 
on measuring the overall level of DNA methylation 
published, epigenome-wide studies, and studies of 
methylation of individual genes conducted. Analysis 
of their results provides for identification of the most 
promising genes in relation to sudden cardiac death, 
the methylation of which is associated with IHD (CTH, 
PLCB1, PTX3, MMP9, FN1, F2RL3, ABCB1, FOXP3, 
GDF15, IL6, and CASR), with lipid metabolism disorders 
and atherosclerosis (CETP, CCL2, SREBF2, and 

TIMP1), with heart rhythm disturbances (SCN5A and 
KCNQ1).

Epigenome-wide association studies aimed at 
identification of unique differentially methylated loci for 
sudden cardiac death, the methylation of which was 
not previously associated with cardiovascular diseases, 
may also become significant. Studying the level of global 
DNA methylation will also expand scientific knowledge 
about epigenetic changes in case of a sudden cardiac 
death. The data obtained during the study of DNA 
methylation in case of a sudden cardiac death will permit 
to advance deeper in understanding of the mechanisms 
of SCD development, including the relations with genes, 
their polymorphic variants and mutations. Moreover, 
studying of DNA methylation is required for development 
of systems for diagnosis, prevention, and treatment of 
cardiovascular diseases leading to a sudden cardiac 
death.
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