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Currently, software products for use in medicine are actively developed. Among them, the dominant share belongs to clinical decision 
support systems (CDSS), which can be intelligent (based on mathematical models obtained by machine learning methods or other artificial 
intelligence technologies) or non-intelligent. For the state registration of CDSSs as software medical products, clinical trials are required, 
and the protocol of trial is developed jointly by the developer and an authorized medical organization. One of the mandatory components of 
the protocol is the calculation of the sample size.

This article discusses the calculation of the sample size for the most common case, the binary outcome in diagnostic/screening and 
predictive systems. For diagnostic/screening models, cases of a non-comparative study, comparative study with testing of the superiority 
hypothesis, comparative study with testing of a hypothesis of non-inferiority in cross-sectional studies are considered. For predictive models, 
cases of randomized controlled trials of the complex intervention “prediction + prediction-dependent patient management” with testing of the 
hypothesis of superiority and non-inferiority are considered.

It is emphasized that representativeness of the sample and other design components are no less important in clinical trials than sample 
size. They are even more important since systematic biases in clinical trials are primary, and even the most sophisticated statistical analysis 
cannot compensate for design defects. The reduction of clinical trials to external validation of models (i.e. evaluation of accuracy metrics on 
external data) seems completely unreasonable. It is recommended to perform clinical trials with the design adequate to the tasks, so that 
further clinical and economic analysis and comprehensive assessment of medical technologies are possible.

The sample size calculation methods described in the article can potentially be applied to a wider range of medical devices.
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Introduction

Currently, software products for use in medicine are 
actively developed. Among them, the dominant share 
belongs to clinical decision support systems (CDSS), 
which can be intelligent (based on mathematical models 
obtained by machine learning methods or other artificial 
intelligence technologies) or non-intelligent. According to 
the current legislation in Russia, such software is subject 
to state registration as medical device [1, 2], which, in 
turn, requires clinical trials. The purpose of these trials 
is to estimate the efficacy and safety of a medical device 
in terms of software [2], and they are performed in two 
forms:

1) research (analysis and evaluation of clinical data);
2) trials.
The meaning of term “research” in the document of 

the Ministry of Health of the Russian Federation dated 
August 30, 2021, No.885 [2] is not defined. According 
to the recommendations of the International Medical 
Device Regulators Forum [3], it is understood as “clinical 
assessment” as a combination of assessment of the 
reliability of clinical association, analytical validation, and 
clinical validation.

As a rule, the clinical trials program is created by the 
developer of the CDSS together with an external medical 
organization that has the right to perform such trials in 
accordance with current regulations.

Despite the fact that the goal of clinical trials 
is to evaluate the efficacy and safety of CDSS, in 
fact, an external validation of CDSS is currently 
performed instead, which allows assessing whether 
the performance metrics of the model declared by the 
manufacturer will be achieved on the data that were not 
used during training or testing of such a model.

From literature [4–6] and from our experience, it 
is known that when models are used in real clinical 
practice, degradation of their accuracy metrics (in 
particular, sensitivity — Se, specificity — Sp) is possible 
due to the fact that models begin to work in clinical cases 
unknown for them, which were not included to training 
and/or test datasets. This is due, among other things, to 
the fact that models are often trained on the data from 
only one medical institution, while the representativeness 
(typicality) of the sample used is often very doubtful, but 
the developers do not think about it. As a result, the 
generalizability of these models (the reliability of their 
work in other medical institutions) is quite low. Let us 
point out that external validation is very important, but 
it is absolutely insufficient for estimating efficacy and 
safety of CDSS.

When creating CDSS, models are designed mainly 
to solve diagnostic and predictive tasks (for example, to 
identify pathological lesions to MRI of various organs, 
to predict unfavorable events). At the stage of planning 
clinical trials and external validation, one of the difficult 
practical issues is to determine the size of the patient 
sample necessary and sufficient to elaborate reliable 

conclusions about the quality of the diagnostic or 
predictive model. Ultimately, this is necessary to build 
confidence in the results of clinical trials of a software 
product containing this model in the process of 
registering it as a medical device. Thus, correctness 
of determining the sample size can become the 
important factor in the success of clinical trials and 
the subsequent obtaining a marketing authorization from 
state agency Roszdravnadzor by the developer.

It is important to note that sample size is not 
the only fundamentally important characteristic of the 
sample: its representativeness is also important [7]. 
Representativeness of the sample can be successfully 
achieved using a probabilistic method of its formation 
(random selection, systematic selection, cluster selection, 
etc.), but in practice this approach is impossible in most 
cases. The following non-probabilistic sampling methods 
are commonly used: convenience sampling, sequential 
(continuous) sampling, volunteer sampling, quota 
sampling, etc. In this situation, it is important to pay 
attention to the prevalence (P, proportion, frequency) 
of the diagnosed (or predicted) condition in the dataset 
since the most important operational characteristics 
(accuracy metrics) of the model depend on it.

A sample should be formed from the same patient 
population in which the developed CDSS is supposed 
to be used — the target population. So, if a model is 
developed on the patient data from hospital case 
records, this product should be validated and used for 
the same patients and not for patients, for example, 
of an outpatients’ clinic. Ideally, the training sample 
should be also representative, at least in terms of the 
prevalence of the diagnosed (or predicted) condition. 
However, developers often deliberately achieve a 
balanced training sample (equality of the volumes of 
recognized classes) since in this case they get models 
with higher estimates of accuracy metrics. At the 
same time, developers often do not realize that failure 
will overtake them later, when the model is almost 
guaranteed to be inoperable in real practice, where the 
same class balance will not occur.

The description in publications and reports of 
the development and validation of diagnostic and 
prognosis models as a whole should comply with the 
modern recommendations STARD [8] and TRIPOD [9]. 
Both documents note that calculation of the sample 
size should be described. The literature discusses 
various ways to determine a sufficient sample size for 
the purposes of external validation of predictive and 
diagnostic models of artificial intelligence, depending 
on the outcome being studied (synonyms: outcome, 
function, dependent variable, output) [10–14]. Such 
outcomes may be a binary outcome, a categorical 
outcome (when three or more classes/events 
are recognized), a continuous outcome, or time to 
event.

In this paper, we consider approaches to calculating 
the sample size in clinical trials in order to assess the 
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efficacy and safety of diagnostic and predictive models 
with binary outcome.

Diagnostic models
The efficacy and safety of diagnostic models should 

be studied in a cross-sectional study. Its main features 
are as follows: diagnostic tests (at least new and 
reference) are applied to the patient simultaneously (with 
a minimum time interval), and their results are mutually 
blinded. The design of cross-sectional studies can be 
easily understood from the template for their description 
in STARD publications [8].

The choice of method for calculating the required 
sample size for binary outcome in a diagnostic/screening 
model depends on the answers to the following 
questions:

1. Is the study comparative or not?
2. If the study is comparative, which hypothesis is 

being tested?
Accordingly, depending on the answers to these 

questions, the following situations arise:
1. Binary outcome, non-comparative study — 

comparison with the reference test.
2. Binary outcome, comparative study:
a) the hypothesis of the superiority of accuracy/

safety of new test over routine test when compared to 
reference test;

b) the hypothesis of non-inferiority/safety of new 
test in relation to the routine test when compared to the 
reference test.

Basically, in a comparative study, it is also possible 
to test the hypothesis of equivalence of new test and 
routine test when compared to the reference test. 
However, this situation is extremely rare, so we will not 
consider it here.

Before proceeding to the consideration of calculation 
methods, let us list the main metrics for assessing the 
quality of diagnostic models with a binary outcome in 
cross-sectional studies:

1. Sensitivity (recall in machine learning) and 
specificity are stable operational characteristics of 
a model, that are independent of the prevalence 
(frequency) of the identified condition in the target 
population. Their point estimates and also confidence 
intervals (CI) with 95%, and even better 99% confidence 
level should be calculated. Note that sensitivity and 
specificity vary reciprocally, and therefore, by optimizing 
one metric, we worsen the other one.

2. Positive and negative predictive values (PPV 
and NPV, respectively) are estimates that depend on 
prevalence of target condition, again their CI (95%, 
99%) are also needed to be calculated. In machine 
learning, PPV is usually called precision. If the sample 
is representative to the target population in terms of 
prevalence (this is usually the case of consequtive or 
random sampling), the calculation of predictive values 
is simple. However, if positive and negative cases were 

sampled separately, an adjustment for prevalence is 
needed:

PPV=Se·P/[Se·P+(1−Sp)·(1−P)];
NPV=Sp·(1−P)/[Sp·(1−P)+(1−Se)·P].

Predictive values are extremely important 
since the physician use them when evaluating the 
result of the diagnosis or prediction for a particular 
patient, given the probability of overdiagnosis and 
underdiagnosis.

In some cases, the overall accuracy of the 
model is also evaluated, i.e. the ratio of the sum of 
true positive and true negative results to the total 
number of observations in the sample. In machine 
learning, this metric is usually referred to as accuracy. 
Sometimes accuracy is also understood as the average 
between the Se and Sp values. For accuracy, CIs 
(95%, 99%) can also be calculated. Accuracy is also 
prevalence-dependent, so it cannot be calculated for 
a non-representative sample without correcting 
for prevalence. This metric is too general, not useful for 
doctors, so it is not recommended to use it.

Such a popular metric as the area under the receiver 
operating curve — AUROC — also has a general 
character. Let us emphasize that this metric is not binary 
and, accordingly, those calculations of the sample size, 
which will be discussed below, are not applicable to it. 
ROC analysis can be done both in [(1–Sp); Se] and 
in [(1–NPV); PPV] coordinates. The last analysis is 
preferable, as it is focused on the physician — the person 
who makes the decision regarding a particular patient. 
ROC analysis is often used for preliminary comparison 
of the accuracy of the models being studied, especially if 
there are many of them (which is often in case of building 
machine learning models). However, ROC analysis is 
completely insufficient to prove the efficacy of the model.

Next, a cut-off value should be defined if the model 
outcome has a continuous range. The criteria for this 
can be the following:

1) minimum type I error (overdiagnosis) with 
acceptable type II error (underdiagnosis);

2) minimum type II error (underdiagnosis) with 
acceptable type I error (overdiagnosis);

3) balance of Se and Sp;
4) maximization of their sum (Youden’s index), etc.
After determining the cut-off value, the calculation 

of Se, Sp, PPV, and NPV metrics for this selected 
value should follow. Usually, in diagnostic tasks, it 
is recommended to optimize Se and/or PPV and 
sacrifices (to an acceptable value) Sp and NPV. In 
screening tasks, it is vice versa: Sp and/or NPV are 
optimized with acceptable Se and PPV values. Note 
that the so-called one-sided use of the model (binary 
classifier) is possible, for example, the use of the model 
only to confirm the target condition (i.e., for diagnostics) 
if the PPV is high, the NPV is low, and at the same 
time the cost of type II errors (hypodiagnosis) is small. 
Conversely, a model with a high NPV and a low PPV 
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can be used for screening if the cost of hyperdiagnostic 
errors is low.

Binary outcome, non-comparative study  
of diagnostic/screening test

In the study of a new (index) test of diagnosis, the 
reference test should be the best test currently available 
for diagnosing the condition. It is assumed that the 
reference test ensures 100% diagnostic accuracy for all 
metrics. Histological examination is usually considered 
such a test in medicine, but it is invasive and in most 
cases cannot be used. However, reasons for the choice 
of the reference test should be given in reports and 
publications.

Diagnostic test metrics — Se, Sp, PPV, NPV — are 
proportions (fractions) for which it is necessary to estimate 
CI (usually, a confidence level of 95% is used). It is the 
lowest limit of CI that should be set as the parameter 
when calculating the sample size. Usually, one should 
strive to ensure that this limit is not lower than 85%. That 
is, the model is good if the CI for any of the metrics lies 
in the range of 85–100%. At the same time, it is obvious 
that if the CI includes 50% or even approaches this value, 
then the model is not useful, and instead of using it, it is 
easier to rely on chance by tossing a coin.

Thus, calculation of sample size in this case is 
reduced to solving the inverse problem — calculating 
the CI (usually 95%) for the expected metric value. 
With that, the target value of the metric should be set 
based on clinical significance, i.e. by physicians, not 
by statisticians. This means that it is physicians who 
should set the minimum acceptable value for the 
diagnostic accuracy index, with a hypothetical 100% 
accuracy of the reference test. Then, an acceptable 
value of the alternative metric should also be set (NPV 
is the alternative metric for PPV, PPV is the alternative 
metric for NPV). The sample sizes obtained for the two 
alternative metrics should be summed up.

Higher requirements should be imposed on PPV (given 
the prevalence) if the problem of diagnostics is being 
solved, i.e. identifying a high-prevalence condition in the 
target population. If the task of screening is being solved, 
i.e. identifying a low-prevalence condition in the target 
population, one should primarily focus on NPV. The Se 
and Sp are less important from the practical point of view 
of the use of the CDSS, while the Se metric is associated 
with the PPV, and Sp is associated with the NPV.

Manual calculating of CI is complicated, so we do 
not give the formula here. Of course, any professional 
software package has convenient options for such 
calculations. However, you can use the not very 
convenient but reliable online calculator https://www.
graphpad.com/quickcalcs/confInterval1/ (although, there 
are many other similar calculators) using the procedure 
of “mathematical adjustment” of the numerator and 
denominator values for a given proportion.

Example 1. Physicians set acceptable values 90% 

for PPV and 80% for NPV. This means that the lowest 
limit of CI for PPV should be at least 90%, for NPV — 
at least 80%. Then one can approximately assume that 
the point estimate of PPV is located in the middle of the 
interval between 90 and 100%, i.e. is equal to 95%. Note 
that for small samples, this assumption is not justified. 
Provided that the future sample will be representative at 
least in terms of the prevalence of the target condition, 
the required sample size obtained using the above 
calculator will be 150 patients since the 95% CI for PPV 
calculated by the exact Clopper–Pearson method in this 
case is equal to (90.6%; 98.1%). The same applies to 
NPV: the middle of the interval between 80 and 100%, 
i.e. 90% can be taken as a point estimate of the metric. 
The sample size for NPV calculated using the same 
calculator would be 63 — for obtaining a 90% proportion 
with a 95% CI (80.5%; 95.9%). After summing 150+63, 
we get 213 as the final value.

Next, the obtained sample size should be distributed 
between positive and negative cases (determined by the 
reference test) in accordance with the prevalence of the 
condition in the target population.

Example 2 (continuation of Example 1). If the 
prevalence of the condition in the target population 
is 60% (0.6), then 213·0.6=128 patients should be 
included in the case group, 213–128=85 patients in the 
comparison group. If the prevalence of the condition in 
the target population is 10% (0.1), then the distribution 
will be different: 213·0.1=21 patients in the case group, 
213–21=192 patients in the control group.

It should be emphasized that if the model was 
developed on the so-called balanced training set, 
i.e. this sample was not representative in terms of 
prevalence, then the estimates of PPV and NPV 
obtained during internal testing are biased — and the 
more the actual prevalence deviates from the group 
sizes in the training sample. As a result, it will be 
difficult, if not impossible, to obtain the same values in a 
well-designed sample during clinical trials. With that, Se 
and Sp do not depend on the prevalence, and therefore 
they are easier to reproduce, but they have no practical 
value for doctors.

External validation of the diagnostic/screening model, 
which often, unfortunately, replaces clinical trials of such 
models, actually corresponds to the non-comparative 
study design described above: samples of positive 
and negative cases are formed, and Se and Sp are 
calculated. This can be considered acceptable if the 
following principles are keeped:

1) sample is obtained strictly from target population;
2) reliable reference test is used;
3) the ratio of positive and negative cases correspond 

to the prevalence of the condition in the target population;
4) calculation of not only Se and Sp but also of PPV 

and NPV is performed;
5) 95% CI must be calculated for all metrics;
6) safety is assessed, first of all, the consequences of 

under- and overdiagnosis errors.

Sample Size Calculation for Clinical Trials
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Binary outcome, comparative study,  
hypothesis of superior accuracy/safety  
of diagnostic/screening test

The hypothesis of the superiority of the model over the 
existing test is tested when compared to the reference 
test. Thus, diagnostics is performed by three tests — 
reference, new, and old (routinely used, suggested for 
replacement) ones.

In this case, the sample size calculation is based on 
clinically significant superiority of the new test over the 
old one. The main calculation parameters are:

1) type I error (alpha) — usually set to 5%;
2) statistical power — 90% is recommended, 80% is 

minimum;
3) the value of the chosen metric (for example, PPV) 

for the old test;
4) the value of the chosen metric for the new test.
It should be noted that the accuracy of the routinely 

used test is not always known. In this case, one should 
perform a preliminary study with assessment of its 
accuracy.

If the excess of the new test accuracy over the old one 
is expected to be small (for example, 5%), such a test is 
unlikely to be introduced into medical practice. A new 
test is often more expensive than the routinely used 
one; accordingly, in this situation, a clinical trial should 
be followed by a clinical and economic analysis, during 
which the incremental cost effectiveness ratio is to be 
evaluated. In other words, it must be determined whether 
the cost increment is justified in terms of the increment in 
diagnostic accuracy. Besides, medical practice is generally 
very conservative, and a small improvement in accuracy 
may not be a strong argument in favor of introducing a 
new test. So, to calculate the sample, it is necessary for 
physicians to establish the minimum accuracy value 
(compared to the routine test) that would convince them to 
use a new, potentially more accurate test.

Calculation of the sample size is possible in various 
statistical packages, but reliable online calculators, 
for example, https://sealedenvelope.com/power/binary-
superiority/ (of course, with reference to the calculator 
and the literature that underlies the calculations and is 
listed on the calculator webpage) can also be used.

Example 3. A new diagnostic test has been developed, 
which exceeds the old one in terms of accuracy by 10%. 
The accuracy of the old test (in the control group interface) 
is 80%, of the new one — 90%. Then the required sample 
size (with a type I error of 5% and a statistical power of 
90%) is 263 patients.

Binary outcome, comparative study,  
non-inferiority of accuracy/safety  
of diagnostic/screening test

The hypothesis is tested that the accuracy of the 
new test is not lower than the accuracy of the old test. 
Of course, the question may arise, why then a new test 

is needed at all. However, for any medical technology, 
not only efficiency is important (accuracy in the case 
of diagnostics or screening), but also safety. Then 
the increase in safety can also be proven in clinical 
trials — when testing the hypothesis of superiority in 
relation to the criterion (or several criteria) of safety. 
This is especially important if the old test is invasive 
or if it requires radiation of the patient. In addition, the 
economic aspect is also important. Thus, a new test may 
be cheaper with the same accuracy, which will create an 
argument in favor of implementing this new test.

In this case, diagnostics is also done using three 
tests — reference, new, and old (routinely used, 
proposed for replacement). The sample size calculation 
is based on clinically significant non-inferiority of the new 
test to the old one. The main calculation parameters are:

1) type I error (alpha) — usually set to 5%;
2) statistical power — 90% is recommended, 80% is 

minimum;
3) the value of the chosen assessment metric (for 

example, PPV) for the old test;
4) the value of the chosen assessment metric for the 

new test;
5) the threshold of non-inferiority.
The last parameter shows the difference between the 

values of the estimated metric, which can be considered 
acceptable by physicians. For example, if the new test 
must be exactly the same as the old one (the accuracy 
of the old and new tests is 80%), the threshold is 
zero. Proving this would require an infinite number of 
observations. By increasing the threshold, we admit that 
the new test may still be somewhat worse than the old 
one. The larger this difference, the easier it is to prove 
non-inferiority since the required sample size will decrease.

Sample size calculation is possible in the online 
calculator on the same online service (https://
sealedenvelope.com/power/binary-noninferior/).

Example 4. The accuracy of the new and old tests is 
set at 80%, the threshold is 5% with type I error of 5% 
and statistical power of 90%. Then 1097 patients would 
be required to prove this hypothesis. If the threshold is 
set to 7%, the required number of patients in the sample 
will be almost half smaller — 560.

It is possible that the new test is slightly better than 
the old one by a clinically significant amount (e.g., by 
2%). Then the required sample size will be smaller.

Example 5. The accuracy of the new test is 82%, 
of the old one — 80%, the threshold is 5%, the type I 
error is 5%, and the statistical power is 90%. Then 538 
patients will be required.

Note that sample size when testing the hypothesis 
of non-inferiority is always larger than when testing the 
hypothesis of superiority.

Prediction models
Such models are much more difficult to assess. 

First of all, one should determine how the prediction 
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will be used. It is typically used to change the patient 
management for secondary or tertiary prevention. Thus, 
testing such a model actually is testing of combined 
medical technology “prediction + prediction-dependent 
patient management”. Moreover, if the prediction is 
accurate, but there are no effective and safe ways to 
prevent outcomes (for example, to prevent unfavorable 
events), then there is no background for a prediction. 
Moreover, a negative prediction will be harmful if the 
patient is informed about it.

Let us note once again that it is important to have an 
effective intervention of influencing on outcomes exactly 
at the stage of the disease/life at which the prediction is 
made. It is known that treatments that are effective in the 
later stages of the disease may be completely useless 
in the early stages of the same disease. Thus, starting 
to solve the problem of prediction, one must first make 
sure that there are effective ways to prevent predicted 
unfavorable events.

Another important parameter of predictive models 
is term for prediction, which is specific for a particular 
task. Sure, we are talking about the prediction period 
not exactly for 1 year, 5 years, etc., but a period of up 
to 1 year, up to 5 years, etc. The shorter the prediction 
period, the easier it is to build it — this is due to the 
completeness of the data, the absence of historical 
bias, etc. For example, predicting the outcome of 
hospitalization due to an acute illness is much easier 
than predicting myocardial infarction in up to 5 years.

Predictive models should be evaluated using another 
study design — a randomized controlled trial (rather 
than cross-sectional design for diagnostic/screening 
tests).

The main features of such trials are the following:
1) the target population is synchronized by some 

event (diagnosis, certain age, surgical intervention, etc.);
2) patients after signing the informed consent are 

randomized into the main and control groups;
3) in the main group, prediction is done for all 

patients, and in case of an predicted bad outcome, the 
patient is managed using modified strategy compared to 
the routine one (for example, more frequent visits to the 
doctor for early detection of recurrence after surgery); 
with a predicted good outcome, routine or even simplified 
management is used;

4) in the control group, prediction is not performed, 
the management tactics are routine;

5) an observation period is established, during 
which adverse events are recorded. The duration of 
observation should be such that a sufficient number 
of predicted outcome in the control group occurs.

The performance metrics of the model in such trials 
are relative risk and absolute risk reduction. If there was 
a large dropout from the study (and this is an inevitable 
companion of long-term observation, which is necessary 
for slowly accumulating events), then it is required to 
evaluate another metric — the hazard ratio (we do not 
dwell on this case in this article). The tested hypotheses 

are superiority or non-inferiority. Let us consider the 
above situations one by one.

Binary outcome, prediction model,  
superiority hypothesis

In developing predictive models, it is usually assumed 
that if a prediction is available, it will be possible to 
improve the patient outcomes. Usually, bad outcome is 
predicted in order to reduce its frequency in the main 
group compared to the control group through the use 
of some medical prevention technology — secondary 
(prevention of the disease) or tertiary (prevention of 
complications, relapses, exacerbations, progression, 
disabling, etc.).

In this case, sample size is calculated the same 
way as described above for the superiority hypothesis, 
however, two samples are needed here, each of 
which will consist of the calculated number of patients. 
Calculations can be done in the calculator at https://
sealedenvelope.com/power/binary-superiority/. It is also 
possible to form samples of unequal size (for example, 
in a ratio of 3:1), but the statistical power then decreases 
and, therefore, a larger sample size is required.

Example 6. In the control group, the disease occurs 
in 20% of the patients, in the main group, we would like 
it to occur in no more than 10% of the patients (the latter 
value is chosen in accordance with the expectations of 
doctors, i.e. clinical significance of the effect). Then, in 
case of type I error of 5% and statistical power of 90%, 
the success rate (no disease) in the control group of 
80% and the success rate in the main group of 90%, the 
required size of each of the groups will be 263 patients.

Binary outcome, prediction model,  
non-inferiority hypothesis

In such trials, it is usually assumed that if there is 
a prediction, it will be possible to simplify the patient 
management without worsening the outcomes 
(development of the disease, complications, etc.). 
For example, it is possible to invite a patient to a visit 
not once a year after surgery, but once every 2 years, 
without worsening the outcome.

Sample size is calculated the same way as described 
above for the hypothesis of non-inferiority, but now two 
samples are required, and each sample should include 
the calculated number of patients. Calculations can be 
done in the calculator at https://sealedenvelope.com/
power/binary-noninferior/.

Example 7. In the control and experimental groups, 
the disease occurs in 20% of the patients (i.e. the rate of 
“success” in both groups is 80%), while the threshold 
of non-inferiority is set at 5%. Then, with type I error of 
5% and statistical power of 90%, the required number 
of patients in each group is 1,097.

External validation of the predictive model, to which 
clinical trials of predictive models are now unreasonably 
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reduced, is done in the design of a retrospective 
case–control study: the main and control samples are 
formed according to the presence/absence of predicted 
outcome (event), patient data are extracted for a period 
corresponding to the prediction period, and the accuracy 
of the prediction (in terms of AUROC, Se, Sp) is 
evaluated. This approach is fraught with serious biases 
that do not allow to correctly assess the efficacy and 
safety of the model, in particular:

1) the cohort is not synchronized;
2) patients with missed data (both in the data used 

for prognosis and in outcomes) are not included in the 
analysis;

3) the prediction period is fixed, while events in 
patients occur at different times;

4) all medical interventions that were applied to 
patients during this period are ignored.

Thus, the design of a retrospective case–control 
study is completely unsuitable for assessing a predictive 
model. A palliative measure could be a retrospective 
cohort study, the main design features of which are as 
follows:

1) the target population and cohort synchronization 
criterion are specified;

2) based on data at the sync point, a prediction 
is built, positive cases are included in the main group, 
negative cases — in the control group;

3) the frequencies of the outcome in the groups that 
have arisen over the prediction period, and predictions 
are compared; dropouts and medical interventions are 
taken into account.

The predictive quality metrics in this situation are Se, 
Sp, PPV, and NPV, and the calculation of the sample 
size is reduced to the case of incomparable study 
of the diagnostic/screening test. During prediction, 
overdiagnosis is often preferred as a conservative tactic.

Of course, a retrospective cohort study is only the 
lesser of the two evils since it does not provide unbiased 
estimates of the efficacy and safety of the predictive 
model either.

Conclusion
We have considered sample size calculation for 

the most common type of models — the one with a 
binary outcome. However, in any calculation, it is still 
desirable to increase the number of patients by 5–10% 
for reliability, especially if dropouts are possible, or the 
statistical power is set at 80%.

Sample size calculation is only one of the components 
of clinical trials protocol, which are planned jointly by 
developer and authorized medical organization. Other 
aspects of clinical trial design are equally or even more 
important since systematic biases in clinical trials are 
primary and even the most sophisticated statistical 
analysis cannot compensate for design defects. Clinical 
trial reduction to external validation of models seems 
completely unreasonable. It is recommended to perform 

clinical trials with adequate design, so that further clinical 
and economic analysis, and comprehensive assessment 
of medical technologies are possible.
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