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Surgery performed by a novice neurosurgeon under constant supervision of a senior surgeon with the experience of thousands of 
operations, able to handle any intraoperative complications and predict them in advance, and never getting tired, is currently an elusive 
dream, but can become a reality with the development of artificial intelligence methods.

This paper has presented a review of the literature on the use of artificial intelligence technologies in the microsurgical operating 
room. Searching for sources was carried out in the PubMed text database of medical and biological publications. The key words used 
were “surgical procedures”, “dexterity”, “microsurgery” AND “artificial intelligence” OR “machine learning” OR “neural networks”. Articles 
in English and Russian were considered with no limitation to publication date. The main directions of research on the use of artificial 
intelligence technologies in the microsurgical operating room have been highlighted.

Despite the fact that in recent years machine learning has been increasingly introduced into the medical field, a small number of 
studies related to the problem of interest have been published, and their results have not proved to be of practical use yet. However, the 
social significance of this direction is an important argument for its development.
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Introduction

In recent decades, there has been significant interest 
in the practical application of artificial intelligence (AI), 
including machine learning, in the field of clinical 
medicine. The current advances in AI technologies 
in neuroimaging open up new perspectives in the 
development of non-invasive and personalized 
diagnostics. Thus, methods of radiomics, i.e., extracting 
a large number of features from medical images, 
are actively developing. These features may contain 
information to describe tumors and brain structures 
which are not visible to the naked eye [1–5]. It is 
assumed that the correct presentation and analysis 
of images with neuroimaging features will help to 
distinguish between types of tumors and correlate them 
with the clinical manifestations of the disease, prognosis, 
and the most effective treatment.

Technologies that evaluate the relationship between 
features of tumor imaging and gene expression are 
called radiogenomics [6–9]. These methods are aimed at 
creating imaging biomarkers that can identify the genetic 
signs of disease without biopsy.

The AI advances in the analysis of molecular and 
genetic data, signals from invasive sensors, and medical 
texts have become known as well. The universality of 
approaches to the use of AI opens up new, original ways 
of using them in the clinic.

From a technical point of view, the term “artificial 
intelligence” can denote a mathematical technology 
that automates the solution to some intellectual problem 
traditionally solved by a person. In a broader sense, this 
term refers to the field of computer science in which 
such solutions are developed. 

Modern AI relies on machine learning technologies — 
methods for extracting patterns and rules from the data 
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representative of a specific task (medical images, text 
records, genetic sequences, laboratory tests, etc.). For 
example, AI can find “rules” for predicting poor treatment 
outcomes from a set of predictors by “studying” 
retrospectively a sufficient number of similar cases with 
known outcomes. This AI property can be used in solving 
tasks of automating individual diagnostic processes, 
selecting treatment tactics, or predicting outcomes of 
medical care according to clinical findings.

In medical practice, particularly in surgery, AI, along 
with surgical robots, 3D printing and new imaging 
methods, provides solving a wide range of problems, 
increasing the level of accuracy and efficiency of 
operations.

The use of AI is even more important in microsurgery, 
when it comes to interventions on small anatomical sites 
with the use of optical devices and microsurgical tools.

An AI challenge in microsurgery is the automatic 
recognition of anatomical structures that are critical 
for the microsurgeon (arteries, veins, nerves, etc.) in 
intraoperative photographs, video images, or images of 
anatomical preparations. The solution to this problem 
creates prospects for the development of AI automatic 
alert tools at the risk of traumatization of critical 
structures during surgery in real time, the choice of 
trajectories for safe dissection or incisions in functionally 
significant areas [10].

Artificial intelligence can evaluate handling of 
surgical instruments, check the positioning of the micro 
instrument in the surgeon’s hands (its position in the 
hand, position to the surgical wound), and hand tremor 
during surgery.

Determining a phase of surgery, predicting outcomes 
and complications, and creating the basis for an 
intelligent intraoperative decision support system are 
prospective goals for AI in microsurgery.

A non-trivial task of using AI in microsurgery is to 
assess the skills of novice surgeons and residents, 
as well as improve the skills of more experienced 
specialists. The solution to this problem, due to the 
extreme work complexity and responsibility of a 
microsurgeon, will bring this field of medicine to new 
frontiers.

To assess the available solutions to the issue 
of using AI in the microsurgical operating room, an 
analysis of articles in the PubMed text database of 
medical and biological publications was performed. 
Literature search was carried out using the key words 
“surgical procedures”, “dexterity”, “microsurgery” AND 
“artificial intelligence” OR “machine learning” OR “neural 
networks” among articles in English and Russian with no 
limitation to publication date.

Automatic assessment  
of the level of microsurgical skills

Continuous training and constant improvement of 
microsurgical techniques are essential conditions for the 

formation of a skilled microsurgeon. It often takes most 
of the professional life to acquire the required level of 
microsurgical skills [11–13].

Microsurgical training requires constant participation 
of a tutor who would correct non-optimal actions and 
movements of the microsurgeon and supervise the 
learning process. A parallel could be drawn between 
the training of microsurgeons and Olympic athletes: 
achieving a high level is impossible without a proper 
training system and highly qualified coaches. However, 
due to the high clinical workload and strenuous schedule 
of skilled microsurgeons-tutors, their permanent 
presence in the microsurgical laboratory is impossible, 
and the start of training in a real operating room is in 
conflict with the norms of medical ethics. In this situation, 
AI technologies can be used in the learning process to 
control the correctness and effectiveness of the manual 
actions of a novice neurosurgeon.

To date, the set of AI technologies that would be 
adapted for the analysis of microsurgical manipulations 
is significantly limited. For example, the use of 
accelerometers attached to microsurgical instruments to 
assess the level of microsurgical tremor was described 
in the papers by Bykanov et al. [14] and Coulson et al. 
[15]. In the work by Harada et al. [16], infrared optical 
motion tracking markers, an inertial measurement 
unit, and load cells were mounted on microsurgical 
tweezers to measure the spatial parameters associated 
with instrument manipulation. AI and machine learning 
methods were not applied in this work. Applebaum 
et al. [17] compared parameters such as the time and 
number of movements in the process of performing a 
microsurgical task by plastic surgeons with different 
levels of experience, using an electromagnetic 
motion tracking device to record the movement of the 
surgeon’s hands. This approach to the assessment 
of microneurosurgical performance stands out for its 
objectivity and reliability of instrumental measurements, 
but requires special equipment.

Expert analysis of video images of the surgeon’s 
work in the operating room is an alternative method 
for assessing the degree of mastering microsurgical 
techniques. However, involving an expert assessor 
in the analysis of such images is a time-consuming 
and extremely laborious method. Frame-by-frame 
analysis of microinstrument motion based on video 
recordings of a simulated surgical performance was 
applied by Óvári et al. [18]. Attempts to objectively 
evaluate and categorize the microsurgical effect based 
on the analysis of a video recording of a microsurgical 
training were made by Satterwhite et al. [19]. However, 
the analysis and evaluation of the performance of 
trained microsurgeons in this work were carried out by 
the expert assessors by viewing video recordings and 
grading according to the developed scale, which does 
not allow leveling the influence of the subjective factor 
on the results of the analysis.

A promising alternative to these technologies is 
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machine learning methods, computer vision, primarily, 
for automated evaluation of the effectiveness of 
macro- and microsurgical performance. These methods 
can be applied on the base of the detection and analysis 
of microsurgical instrument motion in the surgical wound. 
After analyzing the limited scientific literature on this 
topic, we summarized the main processes for obtaining 
data for the analysis of microsurgical procedures using 
machine learning (Table 1).

The few scientific literature data indicate that machine 
learning methods allow to identify complex relationships 
in the movement patterns of a microsurgeon and predict 
the parameters of the effectiveness of microsurgical 
performance. To implement these tasks, the first step 
is to train the model to correctly classify the motion and 
the microsurgical instrument itself in the surgery video. 
The ongoing research studies in this direction are mostly 
focused on teaching computers two main functions: 
determining the phase of a surgical operation and 
identifying a surgical instrument [20].

In works on microsurgery using machine learning, 
two types of data sources are most often used: these 
are video recordings of surgery [21] and a set of 
variables that are obtained from sensors attached 
to microinstruments or on the body of the operating 
surgeon. Some studies combine both sources [22].

In the study by Markarian et al. [21], the RetinaNet, a 
deep learning model was created for the identification, 
localization, and annotation of surgical instruments 
based on intraoperative video recordings of endoscopic 
endonasal operations. According to the findings of the 
study, the developed model was able to successfully 
identify and correctly classify surgical instruments. 
However, all the instruments in the work belonged to the 
same class — “instruments”.

An interesting study was carried out by Pangal et al. 
[23]. In this work, the authors evaluated the ability of 
a deep neural network (DNN) to predict blood loss 
and damage to the internal carotid artery based on 
the 1-minute video data obtained from a validated 
neurosurgical simulator for endonasal neurosurgery. The 
prediction results of the model and expert assessors 
coincided in the vast majority of cases.

In the work by McGoldrick et al. [24], researchers 
used video recordings made directly from the camera of 
the operating microscope and the ProAnalyst software 
to analyze the smoothness of movements of a vascular 
microsurgeon performing microanastamosis, using a 
logistic regression model and a cubic spline.

Franco-González et al. [25] designed a stereoscopic 
system with two cameras that recorded images from 
different angles of surgical tweezers. The 3D motion 

T a b l e  1
Features of data mining process used in machine learning, for the analysis of microsurgical manipulations

Data mining process Description Advantages Disadvantages
Recording of 
interoperative features 

Recording interoperative features such  
as intra-abdominal pressure, weight of suction 
and irrigation bags, surgical table tilting, etc.

1. Easy recording, no additional 
equipment is required in the operating 
room

1. Frequent manual feature 
recording 
2. Time-consuming process

Manual annotation  
of using instruments

Manual annotation of points in time  
when each instrument is entered or withdrawn 
from use

1. High accuracy
2. Strong correlation with the main 
surgical working process
3. No additional equipment is needed  
in the operating room

1. Time-consuming process

Using labeled 
instruments 

Tool use detection by affixing radiofrequency 
identification tags to each instrument  
and placement of antennas all over the operating 
room. The antennas detect the instrument  
as “activated” when the surgeon picks it up

1. Avoiding laborious manual annotation
2. Strong correlation with the main 
surgical working process

1. The process needs special 
additional equipment  
in the operating room

Video-based automatic 
tool usage detection 

Automatic tool usage detection in the surgery 
video using machine learning models

1. Avoiding laborious manual annotation 
and no need for additional equipment  
in the operating room
2. Strong correlation with the main 
surgical working process 

1. Small loss of accuracy 
compared to manual annotation

Manual feature 
extraction from video

It involves manual identification of various types 
of features from video images, such as texture, 
color histograms, object shape detection

1. Taking into account additional 
features to determine the phases  
of operations
2. No additional equipment  
in the operating room is required

1. Features are created  
manually and determined  
in advance, which means that 
information useful to machine 
learning algorithms can be lost

Automatic feature 
extraction from video

Some models are able to automatically learn  
and identify important features of surgical 
procedures using video images

1. The learned features can provide  
the most discriminatory power for phase 
recognition as they take into account all 
the data

1. Training may be technically 
difficult, labor-consuming  
and require significant 
computational resources
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tracking software was created using the C++ 
programming language and the OpenCV 3.4.11 library.

Oliveira et al. [26] showed in their work that the use of 
machine learning and computer vision in the simulation 
of microsurgical operations provides enhancing basic 
skills of both residents and experts with extensive 
experience.

The use of neural networks with long short-term 
memory (LSTM) in the analysis algorithms became 
a major advance in the process of surgical phase 
recognition, which made it possible to improve the 
accuracy of determining a surgical phase up to 85–90%.

It is important to note that due to typical data volume 
limitations, model developers often use the so-called 
transfer learning [27], which allows the model to be 
pre-trained on the same data (most often, on open sets 
that solve similar problems in the same subject area) 
and then retrain on others, on which the target problem 
is solved. Currently, the following sets of open data are 
known, which are used in solving problems related to 
assessing the accuracy of surgical operations:

EndoVis Challenge datasets are a collection of 
labeled datasets that contain videos of various types 
of surgical operations for classification, segmentation, 
detection, localization, etc. [28];

Cholec80 contains 80 videos of endoscopic 
operations performed by 13 different surgeons; all videos 

are labeled taking into account the phases of operations 
and the presence of instruments in the frame [29];

MICCAI challenge datasets are ones that allow a 
large number of contests in the analysis of medical data, 
including the analysis of surgical materials [30];

JHU-ISI and JIGSAWS, a labeled dataset of video 
recordings of operations performed by eight surgeons 
having three skill levels who performed a total of 103 
basic robotic laboratory tests [31];

ATLAS Dione have 99 videos of 6 types of surgeries 
performed by 10 different surgeons using the da Vinci 
Surgical System. The frame size is 854×480 pixels, 
each of which is labeled for the presence of surgical 
instruments in the frame [32].

Theoretically, hundreds and thousands of videos 
can be used to analyze them using machine learning 
methods. However, to train the model, it is necessary to 
view and perform video image labeling in the “manual 
mode”, which requires a lot of time. A possible solution 
to this problem is the use of new algorithms that provide 
annotating video files independently [33].

Table 2 shows a list of machine learning methods 
used, according to scientific literature, in the analysis of 
video images of microsurgical interventions, with a brief 
description of them.

Most studies with the use of AI for the analysis of 
microneurosurgical performance were conducted on 

T a b l e  2
Machine learning methods used in the analysis of data from microsurgical interventions

Algorithm Description Advantages Disadvantages
Hidden Markov 
model (HMM) 
[34, 35]

Statistical model based on Markov processes. A probabilistic 
approach modeling a set of observable/hidden states  
and the probability of transition between hidden states.  
Having detected the transition of observed states  
(for example, bimanual motion of the instrument),  
the algorithm evaluates the most probable sequence of hidden 
states (for example,  in the task of suturing). Hidden states 
often represent surgical maneuvers, and metrics can be 
derived from hidden state transitions. The data obtained 
can be used to analyze the surgeon’s performance

1. Low model complexity
2. Relatively less training data 
is required
3. The algorithm is efficient 
when modeling temporal 
information

1. Gesture segmentation from 
motion data may be challenging
2. Parameter setting and model 
development can be  
time-consuming
3. The functions used in the model 
are defined manually

Dynamic 
time warping 
algorithm 
(DTW) [36, 37]

An algorithm that finds the best match between two time 
sequences that differ in time or speed

1. Ease and convenience  
in implementation
2. Highly effective 
in the search  
for similarities/correspondences 
between two sequences 

1. Functions must be defined 
manually
2. Only two sequences 
can be compared simultaneously
3. Long computation time  
when searching for the optimal 
match

Support vector 
machines 
algorithm 
(SVM) [38, 39]

A method for creating a delimiting linear hyperplane based  
on the geometric distance between data. Designed  
for supervised machine learning that learns the hyperplane  
or decision boundary between classes. The hyperplane  
is derived by maximizing the geometric distance between 
class support vectors. New data will be projected  
into hyperspace and subsequently classified based  
on the ratio to the hyperplane

1. Non-linear classification  
is possible by applying  
a kernel
2. Can be adapted  
for regression
3. Easy to understand  
with low common error
4. Low computational 
complexity of inference

1. Difficult to implement  
for large training data
2. Difficult to solve problems  
with multiple classifications
3. Sensitive to missing data, 
parameters and choice  
of kernel functions
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continuation of the Table 2

Algorithm Description Advantages Disadvantages
k-nearest 
neighbors 
algorithm  
(kNN) [40]

A supervised learning algorithm (by precedents) for 
classification, in which a new point is classified by k-nearest 
neighbors from the training set. The algorithm groups 
the points of each class together. During inference,  
the Euclidean distances between the new observed data point 
and the training data points are calculated. Then, k-nearest 
neighbors (i.e. the k-points with the shortest distances  
to the observed point), and the new data point will be labeled 
as the class with the most number in k-nearest neighbors

1. No training in a classic way 
is required
2. Low complexity  
of the algorithm
3. Suitable for multi-class 
classification tasks
4. Low “cost” of retraining
5. Improved handling  
of overlapping data fields

1. Poor performance when using 
high-dimensional data
2. “Lazy” learning, long inference 
time with large datasets
3. Sensitive to noise, missing data, 
and outliers
4. Data scaling function is required
5. Poor performance  
with class-unbalanced datasets

Naive Bayes 
algorithm [41]

Supervised machine learning algorithm for classification based  
on Bayes’ theorem. A simplified version of the Bayes algorithm  
is a naive Bayes approach built with the assumption  
that the features are conditionally independent. Class  
with the highest posterior probability is the result of the 
prediction

1. Simple, reliable, and easy  
to interpret logic
2. Insensitive to missing data
3. Works well when features 
are close to conditionally 
independent ones
4. Works well with small 
datasets 

1. Hypothesis of conditional 
independence is required
2. Tends to perform worse  
the more complex models  
with large datasets or correlated 
features are used
3. Prior probability is required

Decision  
trees [40]

Supervised learning algorithm for classification. The data  
are repeatedly split into subsets and eventually classified  
at the end nodes according to the logic of the nodes  
along the way

1. Simple and easy  
to interpret algorithm
2. Suitable for big data
3. Low computational power
4. Requires no domain 
knowledge or parameter 
assumptions
5. Not susceptible to loss  
of function
6. Human logics-based  
and deterministic

1. Prone to retraining
2. Can be unstable as small data 
changes can lead to a new tree 
architecture
3. Calculations can get very 
complex
4. Time sequences are difficult  
to classify
5. Pre-processing and feature 
selection are required
6. Sequential process, it cannot be 
parallelized

Random  
forest [42]

Supervised learning algorithm for classification based  
on decision trees. The algorithm combines several randomly 
generated decision trees

1. Reduces the need  
for retraining in the decision 
tree and improves accuracy
2. Flexibility to regression 
problems
3. Resilience to missing data
4. High learning rate

1. Considerable computational 
power may be required
2. Likely to be unstable since small 
changes in data can lead to new 
tree architecture
3. Difficult or hardly possible  
to interpret in some nodes  
of features
4. High computational cost  
in inference with multiple  
sequential processes

Logistic 
regression [43]

Supervised learning algorithm for classification based  
on logistic (or sigmoid) function

1. Ease of understanding, 
interpretation,  
and implementation
2. High performance
3. Good accuracy for very 
simple datasets 

1. Can be easily outperformed 
by more complex algorithms
2. Difficulties in solving  
non-linear problems
3. Sensitive to blurry features

Principal 
component 
analysis  
(PCA) [44]

Unsupervised learning algorithm for data dimensionality 
reduction. Fits the data linearly along the eigenvectors  
(with the largest eigenvalues). As a result, the directions  
with the highest dispersion are selected

1. Improvement of data 
visualization
2. Improvement of algorithm 
performance
3. Correlated features  
are removed

1. Principal components (linear 
combinations of original features) 
are abstracted information  
from the data and can be difficult 
to interpret
2. Sensitive to the scale of features 
and outliers
3. Compromise between 
information loss and dimensionality 
reduction
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End of the Table 2

Algorithm Description Advantages Disadvantages
Linear 
discriminant 
analysis [40]

Supervised learning method for dimensionality reduction  
and classification. A statistical method that projects data onto 
new axes which maximize separability between classes  
by maximizing interclass variance and minimizing intraclass 
variance

1. Controlled dimensional 
reduction with prior knowledge 
of classes
2. Can outperform principal 
component analysis 
as a dimensionality reduction 
method 

1. Not suitable  
for non-Gaussian samples
2. Prone to overfitting
3. The projection space cannot 
exceed the existing dimensions
4. Limited by sample type

Clustering  
by k-means [45]

An iterative clustering algorithm (unsupervised) that separates 
unlabeled data into k distinct groups. Therefore, observations 
having similar features are grouped together. The decision  
for a new point to be grouped into one of the k-groups  
is based on its minimum distance from the center of the group. 
Centers will be recalculated iteratively until convergence. 
Then, the means of the clusters will be used to determine  
the classes of new observed data points

1. Ease of implementation
2. Low complexity  
of the algorithm
3. Scaling to large datasets

1. Necessity to assign k  
that do not meet some 
classification requirements
2. Sensitive to outliers  
and initial values
3. Difficulty in clustering data  
of different sizes
4. Difficulty for implementation
in the case of high-dimensional 
data
5. Not suitable for “non-convex” 
classification 

ANN and DNN 
(artificial and 
deep neural 
networks) [46]

A collection of artificial neurons that interact with each other.  
An ANN is a network of nodes (or neurons) connected to each 
other to represent data or approximations. DNN is an ANN  
with many layers (i.e. deep layers). Deep ANNs can learn  
and determine optimal features from data that can be 
generalized to get the best classification results under implicit 
scenarios

1. The algorithm can achieve 
high accuracy
2. Ability to model complex  
and non-linear problems
3. Ability to learn patterns  
and generalize to process 
unseen data
4. Reliable and fault-tolerant 
to noise

1. A large amount of training data 
is required
2. Time-consuming learning 
process and need for significant 
computational power to train 
complex networks
3. Difficulty in interpretation due 
to its “black box”
4. The learning process 
is stochastic — even learning  
with the same data can lead
to receiving different networks

Convolutional 
neural networks 
(CNN) [47]

CNN is an artificial neural network with a “deep” structure,  
as well as layers of convolution operations and pooling layers.  
The CNN has the ability to learn the best representation  
of features which are then used for a statistically shift-invariant 
classification of input information based on its hierarchical 
structure

1. Learning representative 
features from data
2. Handling data with noise  
and lack of information
3. Wide use for high-resolution 
image classification
4. Pooling can abstract  
high-level information
5. Learning  
can be parallelized 

1. Time-consuming learning 
process and there is need  
for significant computational power 
(compared to common methods  
of machine learning) 
2. The pooling function results  
in the loss of detailed 
and valuable information
3. Poor performance at low 
resolution of an input image 

Recurrent 
neural networks 
(RNN) [46]

RNN networks are a kind of neural network architecture,  
where connections between elements form a directed 
sequence. They are designed for modeling sequential 
processes. They use the current observation together  
with the output of the network in the previous state  
to generate the output

1. Parameter sharing 
mechanism, Turing 
completeness
2. The ability to memorize 
makes the algorithm suitable  
for processing time series 
signals, including semantic 
analysis of text, classification  
of its emotional coloring,  
and language translation

1. Difficult to train
2. Imperceptible problem  
with vanishing gradient
3. Gradient explosion problem 
which can be solved using  
clipping gradient
4. Problems with short-term 
memory

Long short-
term memory 
networks 
(LSTM) [48]

An LSTM network is an artificial neural network containing 
LSTM modules instead of or in addition to other modules in 
INS. An LSTM module is a recurrent network module capable 
of storing values for both short and long periods of time

1. Better vision of complex 
dependencies than recurrent 
models
2. Networks are less sensitive 
to data outliers

1. Long-term dependencies  
are used with low quality
2. It is difficult to parallelize 
calculations
3. Longer time to train
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models of the simplest surgical procedures, separate 
elementary phases of operations (for example, 
suturing, making incisions). Certainly, pilot studies in 
this area typically start with simplified models. However, 
surgery is a complex set of various factors that affect 
the surgical technique and the results of manipulations 
which are difficult to take into account during an 
experiment. And, therefore, the transfer of machine 
learning models from experimental conditions to real 
practice cannot ensure high quality-work, thus reducing 
their value.

Conclusion
Despite the rapid development of machine learning 

methods in the field of clinical medicine, they are in the 
initial phase of approbation in the tasks of evaluating 
microsurgical techniques so far, and they do not seem 
to be introduced into everyday clinical practice in the 
nearest future. However, there are all grounds to believe 
that the use of machine learning technologies, computer 
vision in particular, in microsurgery has a good potential 
to improve the process of learning microsurgical 
techniques. And this serves a good prerequisite for the 
development of a special area of artificial intelligence in 
the field of microneurosurgery.
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