Сегодня: 29.03.2024
RU / EN
Последнее обновление: 01.03.2024
Биологические свойства пленок из регенерированного фиброина шелка

Биологические свойства пленок из регенерированного фиброина шелка

Л.А. Сафонова, М.М. Боброва, О.И. Агапова, М.С. Котлярова, А.Ю. Архипова, М.М. Мойсенович, И.И. Агапов
Ключевые слова: фиброин шелка; коллаген; биодеградируемые пленки.
2015, том 7, номер 3, стр. 6.

Полный текст статьи

html pdf
3262
2279

Цель исследования — изучение биологических и механических свойств пленок, изготовленных из фиброина шелка, и композитных пленок на его основе, содержащих 30% коллагена по массе.

Материалы и методы. Пленки изготовлены методом кастинга с применением двух различных растворителей — воды и муравьиной кислоты. Использованы методы сканирующей электронной микроскопии, атомно-силовой микроскопии. Проверку биосовместимости пленок осуществляли с помощью культуры клеток гепатокарциномы человека Hep-G2.

Результаты. Определена степень шероховатости поверхности полученных пленок. Для пленок, изготовленных из водных растворов, установлено свойство проницаемости для низкомолекулярных веществ. Измерены показатели эластичности и прочности на разрыв исследуемых пленок. Выявлено, что добавление коллагена в состав пленки существенно не влияет на показатель прочности на разрыв, но при этом повышает показатель эластичности пленки. Проведено исследование деградации пленок. Показано, что присутст­вие коллагена существенно не влияет на скорость деградации пленок как в нейтральной, так и в окисляющей средах. На примере культуры клеток Hep-G2 показано, что в наибольшей степени пролиферативную активность клеток поддерживают пленки, изготовленные из водных растворов фиброина шелка и коллагена.

Заключение. Для создания пленок с оптимальными свойствами, которые можно использовать в регенеративной медицине, наиболее подходящим является водный раствор фиброина шелка.

  1. Moisenovich M.M., Pustovalova O., Shackelford J., Vasiljeva T.V., Druzhinina T.V., Kamenchuk Y.A., Guzeev V.V., Sokolova O.S., Bogush V.G., Debabov V.G., Kirpichnikov M.P., Agapov I.I. Tissue regeneration in vivo within recombinant spidroin 1 scaffolds. Biomaterials 2012; 33(15): 3887–3898, http://dx.doi.org/10.1016/j.biomaterials.2012.02.013.
  2. Bonartsev A., Yakovlev S., Boskhomdzhiev A., Zharkova I., Bagrov D., Myshkina V., Mahina T., Kharitonova E., Samsonova O., Zernov A., Zhuikov V., Efremov Y., Voinova V., Bonartseva G., Shaitan K. The terpolymer produced by Azotobacter chroococcum 7B: effect of surface properties on cell attachment. PLoS One 2013; 8(2): e57200, http://dx.doi.org/10.1371/journal.pone.0057200.
  3. Moisenovich M.M., Pustovalova O.L., Arhipova A.Y., Vasiljeva T.V., Sokolova O.S., Bogush V.G., Debabov V.G., Sevastianov V.I., Kirpichnikov M.P., Agapov I.I. In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. J Biomed Mater Res A 2011; 96(1): 125–131, http://dx.doi.org/10.1002/jbm.a.32968.
  4. He Y.-H., Zhang N.-N., Li W.-F., Jia N., Chen B.-Y., Zhou K., Zhang J., Chen Y., Zhou C.-Z. N-terminal domain of Bombyx mori fibroin mediates the assembly of silk in response to pH decrease. J Mol Biol 2012; 418(3–4): 197–207, http://dx.doi.org/10.1016/j.jmb.2012.02.040.
  5. Kasoju N., Bora U. Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomed Mater 2012; 7(4): 045004, http://dx.doi.org/10.1088/1748-6041/7/4/045004.
  6. Hu Y., Zhang Q., You R., Wang L., Li M. The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Advances in Materials Science and Engineering 2012; 2012: 185905, http://dx.doi.org/10.1155/2012/185905.
  7. Baran E.T., Tuzlakoğlu K., Mano J.F., Reis R.L. Enzymatic degradation behavior and cytocompatibility of silk fibroin–starch–chitosan conjugate membranes. Materials Science and Engineering 2012; 32(6): 1314–1322, http://dx.doi.org/10.1016/j.msec.2012.02.015.
  8. Moisenovich M.M., Arkhipova A.Y., Orlova A.A., Drutskaya M.S., Volkova S.V., Zacharov S.E., Agapov I.I., Kirpichnikov M.P. Composite scaffolds containing silk fibroin, gelatin, and hydroxyapatite for bone tissue regeneration and 3D cellc. Acta Naturae 2014; 6(1): 96–101.
  9. Agapov I.I., Moisenovich M.M., Druzhinina T.V., Kamenchuk Y.A., Trofimov K.V., Vasilyeva T.V., Konkov A.S., Arhipova A.Y., Sokolova O.S., Guzeev V.V., Kirpichnikov M.P. Biocomposite scaffolds containing regenerated silk fibroin and nanohydroxyapatite for bone tissue regeneration. Dokl Biochem Biophys 2011; 440: 228–230, http://dx.doi.org/10.1134/S1607672911050103.
  10. Chandrakasan G., Torchia D.A., Piez K.A. Preparation of intact monomeric collagen from rat tail tendon and skin and the structure of the nonhelical ends in solution. J Biol Chem 1976; 251(19): 6062–6067.
  11. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004; 84(2): 649–698, http://dx.doi.org/10.1152/physrev.00031.2003.
  12. Zhang Q., Zhao Y., Yan S., Yang Y., Zhao H., Li M., Lu S., Kaplan D.L. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomaterialia 2012; 8(7): 2628–2638, http://dx.doi.org/10.1016/j.actbio.2012.03.033.
  13. Rosenow F., Ossig R., Thormeyer D., Gasmann P., Schlüter K., Brunner G., Haier J., Eble J.A. Integrins as antimetastatic targets of RGD-independent snake venom components in liver metastasis. Neoplasia 2008; 10(2): 168–176.
  14. She Z., Jin C., Huang Z., Zhang B., Feng Q., Xu Y. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci Mater Med 2008; 19(12): 3545–3553, http://dx.doi.org/10.1007/s10856-008-3526-y.
  15. Lv Q., Feng Q., Hu K., Cui F. Three-dimensional fibroin/collagen scaffolds derived from aqueous solution and the use for HepG2 culture. Polymer 2005; 46(26): 12662–12669, http://dx.doi.org/10.1016/j.polymer.2005.10.137.
  16. Hu K., Lv Q., Cui F.Z., Feng Q.L., Kong X.D., Wang H.L., Huang L.Y., Li T. Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. Journal Bioactive and Compatible Polymers 2006; 21(1): 23–37, http://dx.doi.org/10.1177/0883911506060455.
Safonova L.А., Bobrova М.М., Agapova О.I., Kotliarova М.S., Arkhipova А.Yu., Moisenovich М.М., Agapov I.I. Biological Properties of Regenerated Silk Fibroin Films. Sovremennye tehnologii v medicine 2015; 7(3): 6, https://doi.org/10.17691/stm2015.7.3.01


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg