Сегодня: 28.03.2024
RU / EN
Последнее обновление: 01.03.2024
Эхотрекинг — новая технология оценки структурно-функциональных свойств артерий каротидного русла (обзор)

Эхотрекинг — новая технология оценки структурно-функциональных свойств артерий каротидного русла (обзор)

Е.А. Мельникова, И.В. Авдеева, В.Э. Олейников
Ключевые слова: эхотрекинг; артериальная жесткость; каротидные артерии; атеросклероз.
2016, том 8, номер 2, стр. 119.

Полный текст статьи

html pdf
2614
2710

Проблема поиска и широкого внедрения методов ранней диагностики кардиоваскулярных заболеваний уже на стадии доклинического поражения не теряет своей актуальности. Несомненный интерес вызывают новые методики оценки сосудистой ригидности для стратификации сердечно-сосудистого риска и выбора целей терапевтических вмешательств.

В обзоре рассмотрены современные аспекты оценки локальной жесткости артериальной стенки. Приведены сравнительные данные о возможностях ультразвуковой диагностики при использовании стандартного В-режима и новой методики эхотрекинга. Описаны программные приложения эхотрекинга (QIMT и QAS). Проанализированы показатели, характеризующие локальную жесткость. Отмечено, что несомненным преимуществом методики эхотрекинга является получение результатов измерения, минимально зависящих от предустановок исследователя. Приведены значения ориентировочной нормы исследуемых показателей в разных возрастных подгруппах. Показана диагностическая и прогностическая ценность получаемых параметров и их динамика на фоне медикаментозной терапии.

  1. Национальные рекомендации по кардиоваскуляр­ной профилактике. Кардиоваскулярная терапия и профи­лак­тика 2011; 10(6): прил. 2.
  2. Национальные клинические рекомендации. Под ред. Оганова Р.Г. М: Силицея-Полиграф; 2010; 592 с.
  3. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации, V пересмотр. Атеросклероз и дислипидемии 2012; 4(9): 5–45.
  4. Van Bortel L.M., Laurent S., Boutouyrie P., Chowienczyk P., Cruickshank J.K., De Backer T., Filipovsky J., Huybrechts S., Mattace-Raso F.U., Protogerou A.D., Schillaci G., Segers P., Vermeersch S., Weber T.; Artery Society; European Society of Hypertension Working Group on Vascular Structure and Function; European Network for Noninvasive Investigation of Large Arteries. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30(3): 445–448, http://dx.doi.org/10.1097/HJH.0b013e32834fa8b0.
  5. Милягин В.А., Комиссаров В.Б. Современные ме­то­ды определения жесткости сосудов. Артериальная гипер­тензия 2010; 2(16): 134–143.
  6. Кобалава Ж.Д., Котовская Ю.В., Моисеев В.С. Артериальная гипертония. Ключи к диагностике и лечению. М: ГЭОТАР-Медиа 2009; 864 с.
  7. Laurent S., Cockcroft J., Van Bortel L., Boutouyrie P., Giannattasio C., Hayoz D., Pannier B., Vlachopoulos C., Wilkinson I., Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27(21): 2588–2605, http://dx.doi.org/10.1093/eurheartj/ehl254.
  8. Олейников В.Э., Матросова И.Б., Гусаковская Л.И., Сергацкая Н.В. Роль определения аортального давления и ригидности аорты у пациентов с сердечно-сосудистыми заболеваниями. Терапевтический архив 2014; 86(4): 91–95.
  9. Кревчик В.Д., Олейников В.Э., Матросова И.Б., Гуса­ков­ская Л.И., Сергацкая Н.В. Гемодинамические эффекты взаимодействия прямой и отраженной пуль­совых волн. Медицинская физика 2012; 2: 91–96.
  10. Поздняков Ю.М., Волков В.С. Амбулаторное лечение основных заболеваний внутренних органов. M; 2008; 322 с.
  11. Аронов Д.М., Лупанов В.П. Некоторые аспекты патогенеза атеросклероза. Атеросклероз и дислипидемии 2011; 1: 46–58.
  12. Гуревич В.С. Современные представления о патогенезе атеросклероза. Болезни сердца и сосудов 2006; 4: 4–7.
  13. Oikawa M., Ota H., Takaya N., Miller Z., Hatsukami T.S., Yuan C. Carotid magnetic resonance imaging. A window to study atherosclerosis and identify high-risk plaques. Circ J 2009; 73(10): 1765–1773, http://dx.doi.org/10.1253/circj.cj-09-0617.
  14. Celermajer D.S., Sorensen K.E., Gooch V.M., Spiegelhalter D.J., Miller O.I., Sullivan I.D., Lloyd J.K., Deanfield J.E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340(8828): 1111–1115, http://dx.doi.org/10.1016/0140-6736(92)93147-f.
  15. Недогода С.В., Чаляби Т.А. Сосудистая жесткость и скорость распространения пульсовой волны: новые факторы риска сердечно-сосудистых осложнений и мишени для фармакотерапии. Болезни сердца и сосудов 2006; 4: 21–32.
  16. Reneman R.S., Meinders J.M., Hoeks A.P.G. Non-invasive ultrasound in arterial wall dynamics in humans: what have we learned and what remans to be solved. Eur Heart J 2005; 26(10): 960–966, http://dx.doi.org/10.1093/eurheartj/ehi177.
  17. Лелюк В.Г., Лелюк С.Э. Основы клинической интерпретации данных ультразвуковых ангиологических исследований. М; 2005.
  18. Лелюк В.Г., Лелюк С.Э. Принципы ультразвуковой диагностики поражений сосудистой системы. М; 2002.
  19. Laurent S., Boutouyrie P., Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension 2005; 45(6): 1050–1055, http://dx.doi.org/10.1161/01.HYP.0000164580.39991.3d.
  20. Mattace-Raso F.U., van der Cammen T.J., Hofman A., van Popele N.M., Bos M.L., Schalekamp M.A., Asmar R., Reneman R.S., Hoeks A.P., Breteler M.M., Witteman J.C. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 2006; 113(5): 657–663, http://dx.doi.org/10.1161/CIRCULATIONAHA.105.555235.
  21. Van Bortel L.M., Balkestein E.J., van der Heijden-Spek J.J., Vanmolkot F.H., Staessen J.A., Kragten J.A., Vredeveld J.W., Safar M.E., Struijker Boudier H.A., Hoeks A.P. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens 2001; 19(6): 1037–1044, http://dx.doi.org/10.1097/00004872-200106000-00007.
  22. Рогоза А.Н., Балахонова Т.В., Чихладзе Н.М., Погорелова O.A., Моисеева Н.М., Сивакова O.A. Современные методы оценки состояния сосудов у больных артериальной гипертонией. М; 2008.
  23. Eriksson A., Greiff E., Loupas T., Persson M., Pesque P. Arterial pulse wave velocity with tissue Doppler imaging. Ultrasound Med Biol 2002; 28(5): 571–580, http://dx.doi.org/10.1016/s0301-5629(02)00495-7.
  24. Carerj S., Nipote C., Zimbalatti C., Zito C., Sutera Sardo L., Dattilo G., Oreto G., Arrigo F. 388 Normal vascular aging evaluated by a new tool: e-tracking. Eur J Echocardiogr 2006; 7(Suppl 1): S49, http://dx.doi.org/10.1016/s1525-2167(06)60178-9.
  25. Harada A., Okada T., Niki K., Chang D., Sugawara M. On-line non-invasive one-point measurements of pulse wave velocity. Heart Vessels 2002; 17(2): 61–68, http://dx.doi.org/10.1007/s003800200045.
  26. Touboul P.-J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., Csiba L., Desvarieux M., Ebrahim S., Fatar M., Hernandez Hernandez R., Jaff M., Kownator S., Prati P., Rundek T., Sitzer M., Schminke U., Tardif J.-C., Taylor A., Vicaut E., Woo K.S., Zannad F., Zureik M. Mannheim carotid intima-media thickness consensus (2004–2006). Cerebrovasc Dis 2007; 23: 75–80, http://dx.doi.org/10.1159/000097034.
  27. Riley W.A., Evans G.W., Sharrett A.R., Burke G.L., Barnes R.W. Variation of common carotid artery elasticity with intimal-medial thickness: the ARIC Study. Ultrasound Med Biol 1997; 23(2): 157–164, http://dx.doi.org/10.1016/s0301-5629(96)00211-6.
  28. Yang E.Y., Chambless L., Sharrett A.R., Virani S.S., Liu X., Tang Z., Boerwinkle E., Ballantyne C.M., Nambi V. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2012; 43(1): 103–108, http://dx.doi.org/10.1161/STROKEAHA.111.626200.
  29. Сидоренко Г.И., Фролов А.В., Воробьев А.П., Мель­никова О.П., Золотухина С.Ф. Скорость пульсовой волны как ключ к оценке дисфункции эндотелия. В кн.: Диагностика и лечение нарушений регуляции сердечно-сосудистой системы. М; 2008; с. 99–106.
  30. Орлова Я.А., Агеев Ф.Т. Жесткость артерий как интегральный показатель сердечно-сосудистого риска: физиология, методы оценки и медикаментозной коррекции. Сердце 2006; 5(2): 65–69.
  31. Lunder M., Janic M., Kejzar N., Sabovic M. Associations among different functional and structural arterial wall properties and their relations to traditional cardiovascular risk factors in healthy subjects: a cross-sectional study. BMC Cardiovasc Disord 2012; 12: 29, http://dx.doi.org/10.1186/1471-2261-12-29.
  32. Bennett M.J., McLaughlin S., Anderson T., McDicken W.N. Error analysis of ultrasonic tissue Doppler velocity estimation techniques for quantification of velocity and strain. Ultrasound Med Biol 2007; 33(1): 74–81, http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.040.
  33. Meinders J.M., Brands P.J., Willigers J.M., Kornet L., Hoeks A.P. Assessment of the spatial homogeneity of artery dimension parameters with high frame rate 2-D B-mode. Ultrasound Med Biol 2001; 27(6): 785–794, http://dx.doi.org/10.1016/s0301-5629(01)00351-9.
  34. Милягин В.А., Милягина И.В., Грекова М.В. Новый автоматизированный метод определения скорости распространения пульсовой волны. Функциональная диагностика 2004; 1: 33–39.
  35. Jatoi N.A., Mahmud A., Bennett K., Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens 2009; 27(11): 2186–2191, http://dx.doi.org/10.1097/hjh.0b013e32833057e8.
  36. Лелюк В.Г., Лелюк С.Э. Ультразвуковая ангиология. М; 2003; 336 с.
  37. Laurent S., Katsahian S., Fassot C., Tropeano A.-I., Gautier I., Laloux B., Boutouyrie P. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 2003; 34(5): 1203–1206, http://dx.doi.org/10.1161/01.STR.0000065428.03209.64.
  38. Malshi E., Morizzo C., Florescu M., Kozakova M., Vinereanu D., Palombo C. P.054 Local arterial wave speed at carotid artery level is representative of carotido-femoral pulse wave velocity and aortic stiffness: evidence by a new echo-tracking approach. Artery Research 2006; 1(Suppl 1): S40, http://dx.doi.org/10.1016/s1872-9312(07)70077-7.
  39. Wilkinson I.B., Prasad K., Hall I.R., Thomas A., MacCallum H., Webb D.J., Frenneaux M.P., Cockcroft J.R. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 2002; 39(6): 1005–1011, http://dx.doi.org/10.1016/s0735-1097(02)01723-0.
  40. Zieman S.J., Melenovsky V., Kass D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005; 25(5): 932–943, http://dx.doi.org/10.1161/01.atv.0000160548.78317.29.
  41. Homma S., Hirose N., Ishida H., Ishii T., Araki G. Carotid plaque and intima-media thickness assessed by B-mode ultrasonography in subjects ranging from young adults to centenarians. Stroke 2001; 32(4): 830–501, http://dx.doi.org/10.1161/01.str.32.4.830.
  42. Моисеева Н.М., Пономарев Ю.А., Сергеева М.В., Рогоза А.Н. Оценка показателей ригидности магист­ральных артерий по данным бифункционального суточ­ного мониторирования АД и ЭКГ прибором BPLab. Артериальная гипертензия 2007; 13(1): 34–38.
  43. Meinders J.M., Kornet L., Brands P.J., Hoeks A.P. Assessment of local pulse wave velocity in arteries using 2D distension waveforms. Ultrason Imageing 2001; 23(4): 199–215, http://dx.doi.org/10.1177/016173460102300401.
  44. Riley W.A., Barnes R.W., Evans G.W., Burke G.L. Ultrasonic measurement of the elastic modulus of the common carotid artery. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke 1992; 23(7): 952–956, http://dx.doi.org/10.1161/01.STR.23.7.952.
  45. Vriz O., Driussi C., La Carrubba S., Di Bello V., Zito C., Carerj S., Antonini-Canterin F. Comparison of sequentially measured Aloka echo-tracking one-point pulse wave velocity with SphygmoCor carotid-femoral pulse wave velocity. SAGE Open Med 2013; 1: 2050312113507563, http://dx.doi.org/10.1177/2050312113507563.
  46. Magda S.L., Ciobanu A.O., Florescu M., Vinereanu D. Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels 2013; 28(2): 143–150, http://dx.doi.org/10.1007/s00380-011-0225-2.
  47. Arterial elasticity in healthy Chinese. Chinese Journal of Ultrasonography 2008; 17(7): 571–575.
  48. Zhang P., Guo R., Li Z., Xiao D., Ma L., Huang P., Wang C. Effect of Smoking on common carotid artery wall elasticity evaluated by echo tracking technique. Ultrasound Med Biol 2014; 40(3): 643–649, http://dx.doi.org/10.1016/j.ultrasmedbio.2013.10.009.
  49. Ferraioli G., Tinelli C., Maggi P., Gervasoni C., Grima P., Viskovic K., Carerj S., Filice G., Filice C. Arterial stiffness evaluation in HIV-infected: a multicenter matched control study. AJR Am J Roentgenol 2011; 197(5): 1258–1262, http://www.ajronline.org/doi/abs/10.2214/AJR.11.6712.
  50. Sudano I., Spieker L.E., Noll G., Corti R., Weber R. Cardiovascular disease in HIV infection. Am Heart J 2006; 151(6): 1147–1155, http://dx.doi.org/10.1016/j.ahj.2005.07.030.
  51. Yang S., Wang D., Zhang H., He W., Chen B. Echo-tracking technology assessment of carotid artery stiffness in patients with coronary slow flow. Ultrasound Med Biol 2015; 41(1): 72–76, http://dx.doi.org/10.1016/j.ultrasmedbio.2014.08.015.
  52. Sutton-Tyrrell K., Najjar S.S., Boudreau R.M., Venkitachalam L., Kupelian V., Simonsick E.M., Havlik R., Lakatta E.G., Spurgeon H., Kritchevsky S., Pahor M., Bauer D., Newman A.; for the Health ABC Study. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation 2005; 111(25): 3384–3390, http://dx.doi.org/10.1161/circulationaha.104.483628.
  53. Arnett D.K., Chambless L.E., Kim H., Evans G.W., Riley W. Variability in ultrasonic measurements of arterial stiffness in the atherosclerosis risk in communities study. Ultrasound Med Biol 1999; 25(2): 175–180, http://dx.doi.org/10.1016/s0301-5629(98)00165-3.
  54. Hollander M., Hak A.E., Koudstaal P.J., Bots M.L., Grobbee D.E., Hofman A., Witteman J.C., Breteler M.M. Comparison between measures of atherosclerosis and risk of stroke. The Rotterdam Study. Stroke 2003; 34(10): 2367–2372, http://dx.doi.org/10.1161/01.str.0000091393.32060.0e.
  55. Dijk J.M., Algra A., van der Graaf Y., Grobbee D.E., Bots M.L. Carotid stiffness and the risk of new vascular events in patients with manifest cardiovascular disease. The SMART study. Eur Heart J 2005; 26(12): 1213–1220, http://dx.doi.org/10.1093/eurheartj/ehi254.
  56. Henry R.M., Kostense P.J., Spijkerman A.M., Dekker J.M., Nijpels G., Heine R.J., Kamp O., Westerhof N., Bouter L.M., Stehouwer C.D. Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation 2003; 107(16): 2089–2095, http://dx.doi.org/10.1161/01.CIR.0000065222.34933.FC.
  57. Schram M.T., Schalkwijk C.G., Bootsma A.H., Fuller J.H., Chaturvedi N., Stehouwer C.D.; on behalf of the EURODIAB Prospective Complications Study Group. Advanced glycation end products are associated with pulse pressure in type 1 diabetes. The EURODIAB Prospective Complications Study. Hypertension 2005; 46(1): 232–237, http://dx.doi.org/10.1161/01.HYP.0000164574.60279.ba.
  58. Гурфинкель Ю.И., Каце Н.В., Парфенова Л.М., Иванова И.Ю., Орлов В.А. Сравнительное исследование скорости распространения пульсовой волны и эндо­телиальной функции у здоровых и пациентов с сердечно-сосудистой патологией. Российский кардиологический журнал 2009; 2(76): 38–43.
  59. Илюхин О.В., Лопатин Ю.М. Скорость распространения пульсовой волны и эластические свойства магистральных артерий: факторы, влияющие на их механические свойства, возможности диагностической оценки. Вестник Волгоградского государственного медицинского университета 2006; 1(17): 3–9.
  60. Милягин В.А., Филичкин Д.Е., Шпынев К.В., Шпынева З.М., Милягина И.В. Контурный анализ центральной и периферической пульсовых волн у здоровых людей и больных артериальной гипертонией. Артериальная гипертензия 2009; 15(1): 78–85.
  61. London G.M., Marchais S.J., Guerin A.P., Metivier F., Adda H. Arterial structure and function in end-stage renal failure. Nephrol Dial Transplant 2002; 17(10): 1713–1724, http://dx.doi.org/10.1093/ndt/17.10.1713.
  62. Tozawa M., Iseki K., Iseki C., Takishita S. Pulse pressure and risk of total mortality and cardiovascular events in patients on chronic hemodialysis. Kid Int 2002; 61(2): 717–726, http://dx.doi.org/10.1046/j.1523-1755.2002.00173.x.
  63. Seyrek N., Balal M., Karayaylali I., Paydaş S., Aikimbaev K., Cetiner S., Seydaoglu G. Which parameter is more influential on the development of arteriosclerosis in hemodialysis patients? Renal Fail 2003; 25(6): 1011–1018, http://dx.doi.org/10.1081/jdi-120026036.
  64. Mourad J.J., Pannier B., Blacher J., Rudnichi A., Benetos A., London G.M., Safar M.E. Creatinine clearance, pulse wave velocity, carotid compliance and essential hypertension. Kidney Int 2001; 59(5): 1834–1841, http://dx.doi.org/10.1046/j.1523-1755.2001.0590051834.x.
  65. Covic A., Gusbeth-Tatomir P., Goldsmith D.J.A. Arterial stiffness in renal patient: an update. Am J Kidney Dis 2005; 45(6): 965–977, http://dx.doi.org/10.1053/j.ajkd.2005.02.026.
  66. Barenbrock M., Kosch M., Jöster E., Kisters K., Rahn K.H., Hausberg M. Reduced arterial distensibility is a predictor of cardiovascular disease in patients after renal transplantation. J Hypertens 2002; 20(1): 79–84, http://dx.doi.org/10.1097/00004872-200201000-00012.
  67. Pannier B., Guérin A.P., Marchais S.J., Safar M.E., London G.M. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension 2005; 45(4): 592–596, http://dx.doi.org/10.1161/01.hyp.0000159190.71253.c3.
  68. Niki K., Sugawara M., Chang D., Harada A., Okada T., Sakai R., Uchida K., Tanaka R., Mumford C.E. A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 2002; 17(1): 12–21, http://dx.doi.org/10.1007/s003800200037.
  69. Yusuf S., Hawken S., Ounpuu S., Dans T., Avezum A., Lanas F., McQueen M., Budaj A., Pais P., Varigos J., Lisheng L.; on behalf of the INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364(9838): 937–952, http://dx.doi.org/10.1016/s0140-6736(04)17018-9.
  70. Руководство ЕКО/ЕОА по лечению дислипидемий. Атеросклерозидислипидемии 2011; 4: 5–7.
  71. Кухарчук В.В. Артериальная гипертония, нарушения липидного обмена и атеросклероз. В кн.: Руководство по артериальной гипертонии. Под ред. Чазова Е.И., Чазовой И.Е. М: Медиа Медика; 2005; с. 289–299.
  72. Brunner H., Cockcroft J.R., Deanfield J., Donald A., Ferrannini E., Halcox J., Kiowski W., Lüscher T.F., Mancia G., Natali A., Oliver J.J., Pessina A.C., Rizzoni D., Rossi G.P., Salvetti A., Spieker L.E., Taddei S., Webb D.J. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens 2005; 23(2): 233–246, http://dx.doi.org/10.1097/00004872-200502000-00001.
  73. Waddell T.K., Dart A.M., Medley T.L., Cameron J.D., Kingwell B.A. Carotid pressure is a better predictor of coronary artery disease severity than brachial pressure. Hypertension 2001; 38(4): 927–931, http://dx.doi.org/10.1161/hy1001.096107.
  74. DeLoach S.S., Townsend R.R. Vascular stiffness: its measurements and significance for epidemiologic and outcome studies. Clin J Am Soc Nephrol 2008; 3(1): 184–192, http://dx.doi.org/10.2215/cjn.03340807.
  75. Paini A., Boutouyrie P., Calvet D., Tropeano A.-I., Laloux B., Laurent S. Carotid and aortic stiffness: determinants of discrepancies. Hypertension 2006; 47(3): 371–376, http://dx.doi.org/10.1161/01.hyp.0000202052.25238.68.
  76. Hughes A.D., Sinclair A.M., Geroulakos G., Mayet J., Mackay J., Shahi M., Thom S., Nicolaides A., Sever P.S. Structural changes in the heart and carotid arteries associated with hypertension in humans. J Human Hypertens 1993; 7(4): 395–397.
  77. Jiang B., Liu B., McNeill K.L., Chowienczyk P.J. Measurement of pulse wave velocity using pulse wave Doppler ultrasound: comparison with arterial tonometry. Ultrasound Med Biol 2008; 34(3): 509–512, http://dx.doi.org/10.1016/j.ultrasmedbio.2007.09.008.
  78. Simons P.C., Algra A., Bots M.L., Grobbee D.E., van der Graaf Y. Common carotid intima-media thickness and arterial stiffness. Indicators of cardiovascular risk in high-risk patients. The SMART Study (Second Manifestations of ARTerial disease). Circulation 1999; 100(9): 951–957, http://dx.doi.org/10.1161/01.cir.100.9.951.
  79. Boutouyrie P., Pannier B. Measurement of arterial stiffness. In: Central aortic blood pressure. Laurent S., Cockroft J. (editors). France; 2008; p. 41–47.
  80. Kelly R., Hayward C., Ganis J., Daley J., Avolio A., O’Rourke M. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J Vasc Med Biol 1989; 1: 142–149.
  81. Ahuja K.D., Robertson I.K., Ball M.J. Acute effects of food on postprandial blood pressure and measures of arterial stiffness in healthy humans. Am J Clin Nutr 2009; 90(2): 298–303, http://dx.doi.org/10.3945/ajcn.2009.27771.
  82. Cheng K.S., Baker C.R., Hamilton G., Hoeks A.P., Seifalian A.M. Arterial elastic properties and cardiovascular risk/event. Eur J Vasc Endovasc Surg 2002; 24(5): 383–397, http://dx.doi.org/10.1053/ejvs.2002.1756.
  83. Gamble G., Zorn J., Sanders G., MacMahon S., Sharpe N. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke 1994; 25(1): 11–16, http://dx.doi.org/10.1161/01.str.25.1.11.
  84. Beaussier H., Masson I., Collin C., Bozec E., Laloux B., Calvet D., Zidi M., Boutouyrie P., Laurent S. Carotid plaque, arterial stiffness gradient, and remodeling in hypertension. Hypertension 2008; 52(4): 729–736, http://dx.doi.org/10.1161/hypertensionaha.108.115972.
  85. Beaussier H., Naggara O., Calvet D., Joannides R., Guegan-Massardier E., Gerardin E., Iacob M., Laloux B., Bozec E., Bellien J., Touze E., Masson I., Thuillez C., Oppenheim C., Boutouyrie P., Laurent S. Mechanical and structural characteristics of carotid plaques by combined analysis with echotracking system and MR imaging. JACC Cardiovasc Imaging 2011; 4(5): 468–477, http://dx.doi.org/10.1016/j.jcmg.2011.01.017.
  86. Мартынов А.И., Синицын В.Е., Терновой С.К., Пус­то­­витова Т.С., Остроумова О.А., Шаркова Н.Е., Гед­гафова С.Ю. Особенности изменения растяжимости аорты у пожилых больных на фоне длительной терапии различными классами гипотензивных средств (по данным магнитно-резонансной томографии). Кардиология 2002; 42(5): 19–22.
  87. Blacher J., Pannier B., Guerin A.P., Marchais S.J., Safar M.E., London G.M. Third workshop on structure and function of large arteries: part III. Carotid arterial stiffness as a predictor of cardiovascular and all-cause mortality in end-stage renal disease. Hypertension 1998; 32(3): 570–574, http://dx.doi.org/10.1161/01.hyp.32.3.570.
  88. Boutouyrie P., Laurent S., Benetos A., Girerd X.J., Hoeks A.P.G., Safar M.E. Opposing effects of ageing on distal and proximal large arteries in hypertensives. J Hypertens Suppl 1992; 10(6): S87–S91, http://dx.doi.org/10.1097/00004872-199208001-00023.
  89. Williams B., Lacy P.S., Thom S.M., Cruickshank K., Stanton A., Collier D., Hughes A.D., Thurston H., O’Rourke M.; CAFE Investigators; Anglo-Scandinavian Cardiac Outcomes Trial Investigators; CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113(9): 1213–1225, http://dx.doi.org/10.1161/CIRCULATIONAHA.105.595496.
  90. Cruickshank K., Riste L., Anderson S.G., Wright J.S., Dunn G., Gosling R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 2002; 106(16): 2085–2090, http://dx.doi.org/10.1161/01.cir.0000033824.02722.f7.
  91. Millasseau C., Kelly R., Ritter J., Chowienczyk P.J. The vascular impact of aging and vasoactive drugs: comparison of two digital volume pulse measurement. Am J Hypertens 2003; 16(6): 467–472, http://dx.doi.org/10.1016/s0895-7061(03)00569-7.
  92. Лопатин Ю.М., Илюхин О.В., Илюхина М.В., Ива­нен­ко В.В. Эластичность артерий и скорость пуль­совой волны у больных с хронической сердечной недостаточностью различной этиологии. Журнал сердечная недостаточность 2004; 5(4): 130–131.
  93. Трипотень М.И., Балахонова Т.В., Рогоза А.Н. Срав­нительная оценка ультразвуковых методов определения жестокости общих сонных артерий (М-режим и Echo-Tracking-метод). Ультразвуковая и функциональная диагностика 2011; 6: 50–56.
  94. Милягина И.В., Милягин В.А., Поздняков Ю.М., Лек­сина Ю.Н., Коптева В.В. Сердечно-лодыжечный сосудистый индекс — новый предиктор сердечно-сосудистого риска. Кардиоваскулярная терапия и профилактика 2008; 7(7): 22–26.
  95. Матросова И.Б., Мельникова Е.А., Олейников В.Э. Влияние олмесартана на локальную и региональную ригидность артерий у больных ишемической болезнью сердца. Кардиоваскулярная терапия и профилактика 2014; 13(3): 41–46.
  96. Wilkinson I.B. The pharmacodynamics of central blood pressure. In: Central aortic blood pressure. Laurent S., Cockroft J. (editors). France; 2008; p. 69–74.
  97. Chow B., Rabkin S.W. Brachial-ankle pulse wave velocity is the only index of arterial stiffness that correlates with a mitral valve indices of diastolic dysfunction, but no index correlates with left atrial size. Cardiol Res Pract 2013; 2013: 986847, http://dx.doi.org/10.1155/2013/986847.
  98. Kampus P., Serg M., Kals J., Zagura M., Muda P., Karu K., Zilmer M., Eha J. Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension 2011; 57(6): 1122–1128, http://dx.doi.org/10.1161/hypertensionaha.110.155507.
  99. Leone N., Ducimetière P., Gariépy J., Courbon D., Tzourio C., Dartigues J.-F., Ritchie K., Alpérovitch A., Amouyel P., Safar M.E., Zureik M. Distension of the carotid artery and risk of coronary events: the three-city study. Arterioscler Thromb Vasc Biol 2008; 28(7): 1392–1397, http://dx.doi.org/10.1161/atvbaha.108.164582.
Melnikova E.A., Avdeeva I.V., Oleynikov V.E. Echotrecking Is a Novel Technology to Assess Structural and Functional Properties of Carotid Arteries (Review). Sovremennye tehnologii v medicine 2016; 8(2): 119, https://doi.org/10.17691/stm2016.8.2.16


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg