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The brain extracellular matrix is secreted by neurons and glial cells and represents a molecular net comprised of polysaccharides and 
proteins, fulfilling the space between cells in the tissue. A complex structure and ubiquitous localization of extracellular matrix underlie its 
involvement in numerous important brain functions, such as diffusion regulation, molecular cell-to-cell interactions, synaptic plasticity and 
learning. Additionally, the brain extracellular matrix participates in regeneration of neuronal connections after brain and spinal cord injuries. 
The ability to regenerate connections attenuates by the fast proliferation of the brain extracellular matrix, when its degradation leads to 
regeneration improvement. Therefore, the brain extracellular matrix represents an important direction of clinical research and possible target 
for therapeutic interventions. Here we not only describe the structure of the brain extracellular matrix and its sites of localization in the brain, 
but also make an overview of the influence of the brain extracellular matrix in synaptic plasticity, learning and memory. This review describes 
the role of the brain extracellular matrix for connection recovery after brain and spinal cord injuries. Here, we highlight the positive ability of 
enzymatic removal of extracellular matrix component — chondroitin sulphate proteoglycans by chondroitinase ABC to promote restoration 
of neuronal connections. In conclusion, we discuss possible side effects of treatments requiring the enzymatic removal of chondroitin 
sulphate proteoglycans on synaptic plasticity and speculate about future development of the field of the brain extracellular matrix research.
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Роль внеклеточного матрикса в синаптической пластичности  
при мозговых повреждениях

Ю.В. Дембицкая, к.б.н., научный сотрудник лаборатории внесинаптической передачи НИИ нейронаук;
О.В. Тюрикова, младший научный сотрудник лаборатории внесинаптической передачи НИИ нейронаук;
А.В. Семьянов, д.б.н., член-корреспондент РАН, директор НИИ нейронаук

Нижегородский государственный университет им. Н.И. Лобачевского, Н. Новгород, 603950, пр. Гагарина, 23

Внеклеточный матрикс мозга синтезируется нейронами и глиальными клетками и представляет собой молекулярную сеть, 
состоящую из полисахаридов и белков, которая заполняет пространство между клетками. Быстрое развитие внеклеточного мат-
рикса в местах повреждений приводит к снижению регенеративной способности, в то время как разрушение внеклеточного матрик-
са — к ее увеличению. Изучение внеклеточного матрикса мозга, который может представлять собой потенциальную мишень для 
терапевтических воздействий, — важное направление современных исследований в области физиологии и медицины. В обзоре 
подробно рассмотрена структура внеклеточного матрикса мозга и его локализация в мозге, а также влияние матрикса на синапти-
ческую передачу, обучение и память. Показана роль внеклеточного матрикса в восстановлении нейрональных связей после повре-
ждений мозга, описано положительное воздействие на него фермента, разрушающего хондроитиназу АВС (хондроитин сульфат 
протеогликаны матрикса). Рассмотрены возможные влияния побочных эффектов разрушения хондроитин сульфат протеогликанов, 
используемых для восстановления нейрональных связей, на синаптическую передачу и память. Обозначены перспективы исследо-
вания роли внеклеточного матрикса мозга в норме и при патологии для дальнейшего развития науки.
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Introduction. The brain extracellular matrix (ECM) 
was identified in 1897–1898 by Santiago Ramón y Cajal 
and Camillo Golgi, but technical limitations just recently 
allowed to study its molecular structure. ECM represents 
a molecular net that surrounds brain cells and might 
occupy up to 20% of the brain volume [1]. ECM molecules 
are produced by the Golgi apparatus in neurons and glial 
cells [1–4]. ECM molecules play an important role during 
the development and in the adult brain in normal and 
pathological conditions, including regeneration processes 
[4–8]. Presently, multiple interactions between ECM 
molecules and a number of receptors on the cell surface, 
including those which are linked to cytoskeleton and 
tyrosine kinase were identified [9, 10]. These interactions 
underlay such important ECM functions as involvement 
in proliferation, migration, morphological and biochemical 
differentiation, synaptogenesis and synaptic activity [6, 
7, 11]. ECM molecules interact with ion channels and 
receptors to neuromodulators, that allows ECM regulate 
synaptic transmission [12]. However, the mechanisms 
of this regulation are not yet well understood. Also ECM 
molecules participate in structural rearrangements, that 
take place during synaptic plasticity in the adult brain due 
to matrix metalloproteinases (MMP) activity [9, 13–16], 
and during regeneration of processes [4, 17, 18]. The 
expression of ECM components, however, inhibit the 
functional recovery after spinal cord injury [5, 19–21]. 
The remodeling of ECM had been demonstrated to take 
place after brain traumas and in the development of 
neurodegenerative disorders and in epilepsy. Transgenic 
animals lacking or having a deficient ECM structure tend 
to develop an epileptiform activity and characteristic 
changes of Mossy fibers and granule cells functioning 
[2, 22, 23], and astrogliosis [2, 24–26]. Additionally, ECM 
molecular net mechanically restricts diffusion of molecules 
in the extracellular space [27, 28], diffusion of ions and 
lateral diffusion of receptors in the cell membrane [29, 
30]. The coefficient of Ca2+ diffusion increases after ECM 
removal, since it is a divalent cation and negative charges 
of ECM molecules electrostatically trap Ca2+ and reduce 
its mobility [31, 32]. However, it remains not well studied 
how ECM molecules are involved in electrodiffusion in the 
extracellular space though electrical interactions which can 
play an important role in the local electrodynamic of small 
cell structures like axons, spines and astrocytic processes 
[33, 34]. The ability of ECM molecules for hydration and 
trapping ions allows them mechanically protect brain cells 
[35]. All these properties of ECM might play a number of 
important functions for the nervous system and therefore, 
ECM might be involved in many physiological and 
pathophysiological conditions [5, 7, 10, 36].

ECM components and their interaction. Depending 
on the localization in the brain, ECM can be classified 

in the following categories: 1) basal membrane matrix, 
located between endothelial (vascular smooth muscle 
cells) and the parenchymal cells in the CNS (neurons and 
glia), composed of collagen, laminin-entactin complex, 
fibronectin, dystroglycan and perlikan; 2) perineuronal 
nets, represented by dense, well-structured nets 
surrounding neurons and proximal dendrites, which 
includes: proteoglycans, tenascin-R proteins and 
link proteins; 3) interstitial matrix, localized between 
parenchymal cells of the central nervous system, which is 
composed of proteoglycans, hyaluronic acid, tenascin-R, 
link proteins and a small amount of fibronectin and laminin 
[5, 37–39].

It had been previously demonstrated that perineuronal 
nets and interstitial matrix carrying out an important role in 
synaptic plasticity [5]. The main component of these types 
of ECM are proteoglycans, composed of a core protein 
with chains of the glycosaminoglycans. These chains are 
represented by highly negatively charged disaccharides 
polymers which can be sulphated in several positions (2, 4 
and 6) of carbon atoms. Depending on the type of the main 
disaccharide in glycosaminoglycan chains, proteoglycans 
are divided into several subtypes [35, 40, 41].

If the main component is the chondroitin, the complex 
will be called after it — chondroitin sulphate proteoglycans 
(CSPGs) (See Figure (a)) and similarly with dermatan — 
dermatan sulphate proteoglycans, heparan — heparan 
sulphate proteoglycans and keratan — keratan sulphate 
proteoglycans [5, 42]. Heparan itself composed of 
N-acetylglucosamine and uronic acid (D-glucuronic or 
L-iduronic), chondroitin and dermatan sulphates consist 
of N-acetylglucosamine and D-glucuronic acid, while 
keratan consists of N-acetylglucosamine and galactose. 
Glycosaminoglycan chains covalently bound to the core 
protein via xylose, forming a bond with serine residues in 
proteins and repeating disaccharide [35, 40].

There are three main families of core proteins: 
lecticans (aggrecan, brevican, neurocan and versican), 
phosphacan, neuro-glial antigen 2 (NG2) [11, 36, 43, 
44]. Lecticans have tree domain structure and their the 
N-terminal connected to hyaluronic acid via linking proteins 
(protein BRAL1 or HALPN2), and the C-terminal is linked 
to matrix proteins, such as tenascin-R or receptors on the 
cell surface. Lecticans vary in molecular weight (from 95 to 
400 kDa) and in the number of related glycosaminoglycan 
chains (from 1 to 100), any further sulphitation enhances 
the complexity of their structure [11, 45]. NG2 represented 
only in oligodendrocyte progenitor cells. CSPGs bind also 
to the receptor systems, including receptor of tyrosine 
phosphatase σ (PTPσR) [41], an antigen-associated 
phosphatase in leukocytes [46], epidermal growth factor 
(EGF) [16], NgR1 and NgR3 receptors CD44 (cluster of 
differentiation 44, which acts as a receptor of hyaluronic 
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acid), and Nogo, which are involved in the signaling 
pathway activating Rho and ROCK kinase. Furthermore, 
it had been shown that CSPGs accumulate in the Ranvier 
nodes of myelinated axons, which adjusts the ionic 
conductivity of the fibre by creating an ion barrier [47]. Also 
glycosaminoglycan chains can bind to neural cell adhesion 
molecules (NCAM) and polysialic acid through a fibroblast 
growth factor (FGF) on presynaptic terminal, increasing 
ECM accumulation and its signaling in presynapse [3].

Core proteins are capable of forming nets together 
with glycoproteins, such as tenascin-R, C, and reelin. 
Tenascin-R is a member of the family of tenascins, 
that specifically expressed in the brain and having a 
molecular weight of 160 or 180 kDa. Usually 10–20% of 
its weight represented by sulphated oligosaccharides 
chains, attached to O- or N-positions, occurring due to 
post-translational modifications of proteins. Tenascin-R 
has several domains which bind to different ligands. 
Fibronectin-similar domains 1–2 and 6–8 are connected 
to the voltage-dependent Na+ channels, domains 3–5 
connected with lecticans and 2–5 domains to neurofascin. 
Chondroitin sulphate chains binds to fibronectin and 
tenascin-C and EGF-like domain with phosphacans 
(soluble form PTPσR) [48, 49]. The structure of tenascin-C 
is similar, but it has a higher molecular weight (6 subunits 
with 180–250 kDa) due to a few additional fibronectin-like 
domains. Its expression increases in cancerogenesis [50].

Hyaluronic acid (hyaluronan) is a polymer with a 
high molecular weight that consists of disaccharides: 
N-acetylglucosamine and D-glucuronic acid, but is 
not sulphated. Hyaluronan binds to core proteins, and 
anchors in the cell membrane, forming the main carcass 
for ECM structure, binding through versican or specific 
receptor for hyaluronic acid — CD44. Glial cells are also 
capable of binding to hyaluronic acid via same receptor, 
at the same time expressing specific protein, which 

N-terminal is capable of binding to hyaluronic acid [51].
The complexity of the ECM structure allows multiple 

interactions between matrix components and various cell 
receptors. This makes ECM an important element of the 
nervous system that is capable of affecting the functioning 
of the nervous system via a number of divergent 
mechanisms.

The role of ECM in synaptic transmission. Recent 
studies have been demonstrated that ECM components 
are involved in the regulation of synaptic plasticity by 
several mechanisms [52]. For example, removal of the 
ECM by an enzyme chondroitinase ABC (See Figure (b)) 
changes the efficiency of synaptic transmission [53]. 
Transgenic mice lacking the gene responsible for the 
expression of certain components of the ECM also show 
changes in synaptic transmission; however, this effect 
can be reversed by ECM injection. Expression of ECM 
in the mature brain depends on the neuronal activity. 
Manipulation with the ECM leads to changes in the 
number of synapses, distortions of the cycle of vesicles 
and alterations in the number of receptors and their 
densities [4]. Since ECM is a multicomponent system, 
different elements might have different impact on synaptic 
transmission. For example, the removal of hyaluronic acid 
reduces the activity of L-type voltage-dependent calcium 
channels (VDCC), and therefore, a reduction of long-term 
potentiation (LTP) induction, that highly depends on L-type 
of VDCC. That effect is mediated by exogenous hyaluronic 
acid that selectively increases the current mediated 
Cav1.2 subunit [54]. The removal of hyaluronic acid 
causes an enhancement in lateral diffusion of membrane 
receptors, including AMPA (amino-3-hydroxy-5-methyl-
4-isoxazolepropionic) receptors, thus reduces paired 
depression of AMPA currents due to more rapid change 
receptors and their displacement [30]. Transgenic mice 
lacking the tenascin-C show no morphological disruptions 

а b

Structure of extracellular matrix (ECM): (a) scheme of ECM structure; (b) scheme of ECM 
structure after the removal of chondroitin sulphate proteoglycans by сhondroitinase ABC
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in the nervous system during the development, including 
migration, the distribution of oligodendrocytes, and 
myelination of processes. Despite the normal histology of 
hippocampus and the behaviour in the water maze, LTP 
significantly decreases after tetanic stimulation caused 
by a decrease in Ca2+ entry through L-type of VDCC 
[55]. Moreover reduction in the number of interneurons 
cause an enhancement of theta and gamma rhythms in 
CA1 region of the hippocampus [56]. Transgenic mice 
lacking the tenascin-R showing a reduction in GABA 
(gamma amino acid receptors, type A)-mediated currents, 
and an increased level of excitation [57]. Attenuation of 
tenascin-R reduces an inhibition and correlates with an 
increase in the threshold for LTP generation, acting on 
L-type of VDCC channels and phosphatases [58]. LTP is 
controlled via the influx of Ca2+ to the cell and the level of 
inhibition in CA1 pyramidal neurons [2]. Activation of reelin 
facilitates NMDA receptor phosphorylation (N-methyl-
D-aspartate) by the tyrosine kinase receptor in CA1 
pyramidal neurons and increases their activity. Transgenic 
mice overexpressing reelin show facilitated LTP in vivo, 
the larger number and size of the spines [59]. Enzymatic 
removal of CSPGs enhances plasticity in the visual cortex 
and other types of plasticity in adult animals, promotes 
the vision recovery in amblyopia and following the spinal 
cord injuries [9]. Transgenic mice lacking brevican and 
neurocan also show reduced LTP [60, 61]. Recent studies 
demonstrate that developmental increase in the ratio of 
4-sulfo/6-sulfo (4S/6S) CSPGs determines the critical 
periods in the visual cortex development. The removal 
of the ECM also controls the diffusion of molecules and 
the size of the intercellular space [32]. That can cause 
significant changes in calcium signaling in neurons, and 
astrocytes and can seriously affect synaptic transmission. 
All of these changes, affecting synaptic transmission 
may have an impact at a higher level by changing the 
processes of learning and memory.

The role of ECM in learning and memory. 
Manipulation with the ECM molecules might cause 
changes in synaptic transmission and lead to distortion 
of learning and memory processes [62] in a component-
dependent manner. In behavioural experiments, an 
enzymatic removal of hyaluronic acid before training 
reduces the efficiency of learning in a fear conditioning 
paradigm [29]. Transgenic mice lacking the tenascin-R 
show an enhanced learning ability, improved working 
memory, increased performance in the objects recognition 
task, which can be associated with a reduction in 
GABAergic innervation in the dentate gyrus and improved 
signal-to-noise ratio during behavioural tasks [57]. In 
addition, the LTP induction phase and behavioural tests 
performance are accompanied by the activation of MMP-9 
and 3, when the MMP inhibitors cause a reduced ability 
of animals for learning and habituation to new conditions. 
Therefore, the activation of MMP-3 and 9 is critical for 
memory formation at the cellular and system levels [13]. In 
normal conditions, the activation of MMP-9 contributes to 
the local ECM remodeling [15, 63] with parallel activation 

of cofilin in postsynaptic side by integrins, providing the 
possibility for spine enlargement [63–66].

Thus, ECM is essential for the normal functioning of the 
nervous system, maintenance of synaptic transmission 
and plasticity. Moreover, the ECM is also involved in 
pathophysiological and behavioural processes, including 
brain injuries.

The role of ECM in brain injuries. Brain injuries 
trigger specific response to it, that often is accompanied 
by reactive gliosis, so called glial “scar” [67–69]. Mainly, 
this response has the same development regardless 
of the source of damage, but the immune response still 
can vary depending on the particular type of pathology 
and localization [69–72]. Equivalent traumas of the brain 
and spinal cord trigger significantly lager leucocytes 
activation in the first case, causing more prominent 
damage compare to the second case [70, 73, 74]. After 
initial stage of trauma, when cell death, axon damage 
and demyelination are taking place, the glial scar starts 
developing [5, 75]. Following, the production of ECM 
molecules increases at the damage [76, 77]. Then 
activation and migration to the damage site of microglia 
occur, where they serve microphage function, particularly 
by removing disturbed myelin [78]. On the next step the 
density of hypertrophied astrocytes increases and their 
processes form a dense net [75, 79]. Glial cells dividing 
at the damage site due to an appearance of progenitor 
cells [80]. As a result, at the damage site the dense glial 
scar occurs, that inhibits axonal grow and myelination. 
Along with the loss of oligodendrocytes it prevents the 
reestablishment of neuronal connections [81].

It is not yet fully understood which particularly type 
of glial cell is playing a critical role in this process and 
require additional studies [81]. It had been shown that 
components of the glial scar might interact with ECM 
molecules [26] via numerous receptors [82–84], such 
as neurocan [85], PTPσR [86, 87], CSPGs [87–89] 
etc., preventing axonal regeneration [26]. Particularly, 
an interaction between astrocytes and CSPGs inhibits 
regeneration abilities [5]. Notably, the enzymatic removal 
of CSPGs by chondroitinase ABC at the damage site 
leads to significant improvements in the connections 
reestablishment, and more important, to functional 
recovery of motor functions [20, 21, 53, 90, 91]. One 
possible mechanism for it could be facilitation of 
oligodendrocytic migration, and, therefore, promoting 
remyelination [5, 55, 92, 93]. Moreover this positive effect 
of chondroitinase ABC treatment remains sufficient to 
promote motor recovery on day 2, 4 and 7 following injury 
[20]. However the recovery of fine movements is the most 
efficient when the enzyme is applied following the injury 
[53]. Chondroitinase ABC treatment also promotes the 
recovery in peripheral nervous system [94, 95]. Moreover, 
chondroitinase ABC treatment has a positive effect on 
chronic spinal cord injuries, which considered as the most 
difficult for treatments since permanent loss of neurons 
lead to an occurrence of cavities, preventing axonal grows 
[96, 97]. The combined treatment with chondroitinase 
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ABC, with a complex of grows factors (EGF, bFGF, PDGF-
AA) and with transplantation of progenitors gives the most 
prominent recovery of motor functions [98]. The treatment 
with chondroitinase ABC and induced pluripotent stem 
cells also promotes axonal repairmen and recovery of 
motor functions [90, 99].

Similar consequences leading to glial scar and 
aggregation of ECM might occur following a stroke in 
the brain, when on earlier stages it plays a protective 
function [100]. However, on later stages they prevent 
axonal growth and connections recovery, and as a result, 
losing normal function of damaged region [79, 101, 102]. 
The treatment with chondroitinase ABC decreases 
chronic effects of stroke, particularly, the aggregation 
of CSPGs and neurocans, and improves anatomical, 
histological and functional conditions of the damaged 
region [97, 103].

Thus, attenuation of ECM, and particularly of CSPGs, 
allows significant improvement of the reestablishment of 
neuronal connections and they functioning in the spinal 
cord and in the brain, that makes chondroitinase ABC an 
important target for therapeutic interventions.

Possible effects of the removal of CSPGs on 
synaptic transmission. The tight connections between 
different ECM components and membrane receptors 
and lack of knowledge about the wide range of their 
possible interactions leave a great chance of side effects 
of the treatments with chondroitinase ABC. It had been 
demonstrated that the treatment with chondroitinase ABC 
abolishes LTP in CA1 pyramidal neurons following five 
theta-burst stimulation of Schaffer collaterals using field 
recordings [104]. That can represent a consequence of 
the change in the excitation of inhibitory neurons [104], 
but it was not yet studied sufficiently. Similar observations 
were obtained in whole-cell patch clamp recordings in 
CA3-CA1 synapses, where LTP could not be triggered 
after the removal of CSPGs [105]. This phenomenon was 
not due to increased excitability of interneurons, but due 
to a decrease of excitability of CA1 pyramidal neurons, 
because of upregulation of small-conductance, calcium 
activated potassium channels [90]. However, it was not 
the only pathway that was altered by the treatment with 
chondroitinase ABC, in parallel the ROCK-pathway 
(Rho-associated kinase) were upregulated, leading to 
persistent potentiation of CA3-CA1 synapses [105]. 
CSPGs removal triggers structural plasticity via ROCK-
pathway, that leads to the cytoskeleton rearrangements 
and can cause spines enlargements, causing LTP [105]. 
In hippocampal cultures enzymatic removal of hyaluronic 
acid leads to epileptiform activity [106, 107] and to an 
increase of lateral diffusion of AMPA receptors [30], 
that can significantly affect synaptic plasticity. However, 
the lateral mobility of AMPA receptors is not altered in 
hippocampal slices [105]. Thus, the treatment of the brain 
injuries with chondroitinase ABC affect basic neuronal 
functions, such as synaptic transmission and plasticity, 
which should be considered in clinical applications. 
Additionally, the treatment with chondroitinase ABC alters 

calcium signaling in astrocytes, causing an increase in the 
duration of astrocytic calcium events, that can significantly 
affect a number of biochemical cascades in astrocytes via 
longer presence of Са2+ in cytosol [105]. Therefore, these 
aspects of treatments with chondroitinase ABC further 
investigated.

Conclusions. Thereby, ECM is involved in the brain 
functioning via a number of mechanisms at different levels 
and at different stages of the development, in physiological 
and pathophysiological conditions. Nevertheless, the 
particular mechanisms of those interactions remain 
understudied and require further interrogation of involved 
molecular cascade. Enzymatic attenuation of ECM, solely 
or accompanied with stem cells treatments, represents 
an important therapeutic strategy for recovery of neuronal 
connection after brain injuries. However, the possible 
side effects of the treatment with enzymes targeting 
ECM structure, such as chondroitinase ABC, appeal 
for an additional attention. The ability of chondroitinase 
ABC to affect at least two independent pathways leading 
to different types of plasticity and alter calcium activity 
in astrocytes in hippocampus in vitro, points out the 
necessity of careful consideration of the treatment in 
clinical practice, especially in the case of brain injuries. 
Therefore, ECM has a complex influence not only on 
neuronal functioning, but also on astrocytic functioning 
and its calcium activity. More detailed studies of effects 
of ECM and its components on synaptic transmission 
in different brain regions, and particularly in vivo, are 
necessary for better understanding of ECM functions 
in the brain. The precise mechanisms of ECM influence 
of astrocytic functions remain uninvestigated, despite a 
crucial role of astrocytic functioning in physiological and 
pathophysiological conditions. Therefore, understanding 
of the ECM role in the brain remains a priority of current 
studies and require thorough and detailed investigations.
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