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In medicine cytokines play an important role as the immune response modulators. However, biologically active drug application in high 
doses in oncology is followed by a number of unfavorable side effects resulting in treatment cessation. Target therapy enables to increase the 
efficiency of cytokine usage, and therefore, reduce the drug doses.

The achievements in genetic engineering and biotechnology led to a growing number of new antibody-cytokine fusion proteins. Such hybrids 
can have the properties of all components and acquire advantages compared to proteins alone. For example, monoclonal antibodies specific to a 
particular tumor antigen being fused with cytokines (MAb–C) provide accumulation of cytokines in tumor microenvironment, increase antitumor 
effect of antibodies and enhancement of the immune response against a tumor. MAb–C with various specificity against a number of tumors have 
been created in the last twenty years. It was shown on animal models that such fusion proteins being accumulated around a tumor are capable 
to cause the considerable antitumor response, which in some cases results in complete tumor elimination. The present review describes data on 
existing models of antibody-cytokine fusion proteins, their technology and application prospects in oncology.
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Cytokines consider to be the protein nature mediators, 
mediator molecules, which take part in intercellular signal 
transmission. Their main role is to simulate an immune 
response. A cytokine binding with specific receptors 
on cytoplasmic membrane activates the mechanism of 
intercellular signal transmission providing the regulation of 
a number of genes responsible for the synthesis of both: 
modulators themselves, and other cytokines, as well as 
the formation and appearance of cytokine receptors on cell 
surface [1–3].

By now over 100 various cytokines have been discovered 
and described [4]. Among these are interleukins (IL), 
interferons (IFN), colony-stimulating factors (CSF), tumor 
necrosis factor (TNF), growth factors and chemokines. 
These mediators exhibit diversified activity, which partially 
cross. Cytokines are rarely formed separately and rarely 
act singly. Cytokine system response is of complex network 

nature, when the production of one of them has an effect on 
the formation or activity of others [5–7].

Many cytokines have direct antitumor activity or are 
the mediators of antitumor immunity [8, 9]. Systemic 
high-dose cytokine therapy is frequently accompanied by 
severe side effects, which make further use of cytokines at 
recommended dosage impossible [10–12]. Target injection 
of a drug into a tumor partially solves the problem, since 
cytokine concentration at injection site decreases rapidly. 
Moreover, frequently tumor or metastases localization make 
it impossible to carry out a procedure [13, 14].

Other approach is to use gene therapy [15, 16]. In 
this case a vector carrying gene responsible for cytokine 
synthesis is injected. The expected result is systemic 
immune response against tumor [17, 18]. This technology 
is highly complicated, takes a long time and is expensive, 
that limits its application.
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Tumor-specific monoclonal antibodies genetically fused 
with cytokines (MAb–C) are an alternative option for 
intratumoral cytokine accumulation in the concentration 
sufficient to produce significant antitumor effect without 
systemic toxicity accompanied. Cytokines can have an 
effect on both the cell that have bond the antibodies with, 
and neighboring cells. Moreover, due to the binding to cell 
surface through antibodies, fusion proteins can simulate 
cytokine transmembrane form. It has been demonstrated 
that some cytokines exist both dissolved, and being bind 
to membrane, and their functions differ. These effects are 
described, for instance for TNF [19].

As well as antibodies provide cytokine delivery to tumor, 
they also can be used as antitumor agents by blocking the 
receptors on the surface of tumor cells [20–24]. About 50% 
of all antibodies on pharmaceutical market are antitumor, 
and in 2013 about 10 new agents are expected to appear, 
which are meant for the treatment of different tumors [25].

Currently, a variety of tumor-specific MAb–C containing 
different cytokines has been developed and is being under 
trial (at various phases) [26, 27]. This review summarizes 
the knowledge on existing fusion proteins, their technologies 
and prospects for application in oncology.

Fusion proteins technology 

There are five classes of human immunoglobulins 
(antibodies): IgG, IgA, IgM, IgD and IgE, which vary in 
molecule size, charge, amino acid profile, and carbohydrate 
status. At the same time there is significant heterogeneity 
within the limits of an each class. The main structural unit of 
any class immunoglobulin consists of two similar light and 
two similar heavy chains held together by disulphide bonds 

(See Fig. а). Each light chain consists of one variable (VL) 
and one constant domain (CL), while a heavy chain — of one 
variable (VH) and three constant domains (CH1, CH2, CH3).

Variable domains of a heavy and light chain form an 
immunoglobulin variable region (Fv) providing a specific link 
with antigen. Antibodies can be split into three fragments 
using papain protease: two Fab (fragment antigen binding) 
and one Fc (fragment crystallizable). Fab contains all light 
chain, VH-domain and CH1, Fc — all other С-domains of a 
heavy chain. The division occurs in a hinged region (HR) — 
it is a specific part of a polypeptide chain, which is not a 
part of domains and genetically not related to them.

Classical technique of monoclonal antibodies production 
is hybrid technology [28, 29]. The idea lies on the fact that 
myeloma cells are fused with B-lymphocytes secreting 
specific antibodies after mice being immunized by an 
appropriate antigen. Hybrid cells (hybridomas) are capable 
of unrestricted division and synthesis of target antibodies. 
Such murine antibodies show antitumor effect blocking 
the receptors on tumor cells and counteracting fluid-phase 
ligands, as well as inducing apoptosis [30]. However, Fc-
region of murine antibodies is not capable of binding to 
human effector cells completely that limits their therapeutic 
potential. Moreover, such an agent is immunogenic, and 
in patients it causes a response against murine antibodies 
with their further neutralization and degradation [31, 32].

Despite significant target efforts, no adequate 
approaches have been developed to obtain hybrids based 
on human cells. Currently, the problem is solved using 
molecular-genetic approaches [33]. Humanization of murine 
antibodies is the most common approach. The technique 
consists in the formation of fusion genetic complexes uniting 
V-gene of murine monoclonal antibodies and С-genes 

а

b

Fig. Schematic diagram of IgG molecular structure (а) and examples of existing fusion proteins based on antibodies or mini-antibodies 
(b). The description is given in the text
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of human immunoglobulins of a desired isotype. Due to 
the presence of human constant region, these antibodies 
have a wide range of biological functions. Rituximab is an 
example of humanized antibody (Rituxan, MabThera) [34–
36]. Rituximab recognizes antigen CD20 on the surface of 
normal and tumor В-cells and induces cell-mediated and 
complement-mediated cytotoxicity and apoptosis of these 
tumor cells. There is the more radical approach consisting 
in fusing hypervariable regions of murine V-genes with 
genes encoding framework sequence of human V-gene 
and human С-genes. Such humanized antibodies have the 
only part remained after mice — a hypervariable region. 
Trastuzumab (Herceptin) is an example, these antibodies 
bind to receptor 2 of human epidermal growth factor 
(HER2). These antibodies are recommended for breast 
cancer therapy [37–39].

To exclude immunogenicity there is a need to obtain fully 
human antibodies. For that purpose there were produced 
transgenic mice, immunoglobulin genome of which was 
replaced with human ones (of XenoMouse line, Tc-mice). 
Such mice produce human polyclonal antibodies [40–42].

An alternative of fully antibodies is mini-antibodies with 
two chains of a single-chain variable antibody region (scFv), 
a hinged region and CH3-domain or CH2–CH3-domains [43–
44]. Unlike the first ones, they are characterized by higher 
elimination rate (10 h instead of 3–4 weeks). Among the 
disadvantages of mini-antibodies there is the loss of some 
functions including cell-mediated cytotoxicity, which plays a 
key role in antitumor mechanism of antibody action [45].

Phage display technology can also be used to receive 
human antibodies [46, 47]. scFv genes are cloned in phage 
display vector. scFv fragment expressed on bacteriophage 
surface has a high degree of relationship with a target 
antigen.

In the past decade there has been developed a number 
of MAb–C of various structure and functional significance. 
Both whole antibodies and their fragments can underlie 
these recombinant proteins (See Fig. b). The variety of 
fusion proteins is provided by cytokines used, among them 
there are both monomers and homodimers or homotrimers, 
in addition, there are cytokines formed by different 
polypeptide chains — heterodimers [4].

Currently, recombinant MAb–C present two main forms: 
F(ab)2/C secreted by mammal cells, and a single-chain 
FV/C (micro-antibodies) expressed by E. coli. The first one 
are large molecules, 134–140 kDa, consisting of a pair 
of light chains and a pair of hybrid heavy chains, each of 
which includes a variable region CH1, a hinged region and 
a cytokine. Micro-antibodies, 42–45 kDa, consist of one 
variable fragment of a heavy chain, one variable fragment 
of a light chain, and a cytokine. In the early 90-s there 
was produced MAb–C, in which a cytokine binds to С-
terminus of С3-domain of a heavy chain. The researchers 
demonstrated that in most cases such molecules retain 
both antibody (capability to bind to antigen), and cytokine 
functions. This indicates the feasibility of DNA-technology 
to produce bifunctional proteins.

The use of mammalian cells as expression system for 
MAb–C (e.g., newborn hamster cell culture) provides 
posttranslational human specific modifications that increase 

biological activity of recombinant immunoglobulins and in 
vivo complex stability [48].

Plants with temporary expression of recombinant proteins 
can be one more producer of fully antibodies genetically 
fused with cytokines [49]. Currently, Trastuzumab analog 
(Trastuzumab, Herceptin) was produced using this 
technology [50].

Prospects for Mab–c application in oncology

The pharmaceutical market has no MAb–C approved for 
anticancer therapy. However, a number of pharmaceuticals 
are under clinical trials (I–II phases). Preliminary trial data 
indicate extensive prospects to use recombinant MAb–C 
as anticancer drugs. Due to a growing number of antibody-
cytokine combinations (Table 1) it is impossible to cover all 
existing variants in the present paper. Let us consider the 
most developed and advanced variants, in which monoclonal 
antibodies bind to IL-2, IL-12, GM-CSF and TNF.

MAb–iL-2. IL-2 is known as an immunomodulator of 
cellular and humoral immunity with an extensive therapeutic 
potential [51, 52]. This cytokine is capable to inhibit tumor 
growth inducing apoptosis due to its capability to stimulate 
macrophages and NК-cells and increase the expression 
of histocompatibility molecules class II [53]. Е. Ortiz-
Sanchez et al. described the main existing MAb–IL-2 and 
their functional value [26]. First MAb–IL-2 was developed 
in the early 90-s. They presented IL-2 molecule bound 
to C-terminus IgG3 specific to dancyl [54]. IgG3–IL-2 
could stimulate proliferation of IL-2-dependent murine Т-
cells of CTLL-2 line. This fusion protein showed higher 
(approximately 4 times as high) affinity than recombinant 
human IL-2, and was more effective at activation of LAK-
cells (lymphokine-activated killer). Moreover, IgG3–IL-2 
half-life at gastric administration in mice was 7 h that is 
longer than free IL-2 administration, but shorter than using 
single IgG3 injection.

There were developed two MAb–IL-2 specific to Id-
antigen, one of which included complete IgG1, another — 
a single chain fragment scFv IgG1 [55]. The researchers 
showed scFv–IL-2 capacity to bind to antigen to be 30–40 
times as low than that of IgG1–IL-2. In addition, scFv–IL-2 is 
excreted 20 times as fast than IgG1–IL-2. Finally, scFv–IL-2 
has no Fc-region necessary to induce antibody-dependent 
cell-mediated cytotoxicity, and plays a key role in IgG1–IL-2 
antitumor activity.

20–30% cases of breast and ovarian cancer show 
hyperexpression of HER2/neu (erbB2) receptor. The 
above mentioned Trastuzumab (Herceptin) used in the 
pharmaceutical market presents monoclonal antibodies to 
this receptor. Trastuzumab bound to HER2/neu stops cell 
cycle at G1 phase thus reducing the proliferation of tumor 
cells. There has been developed anti-HER2/neu IgG3–IL-2 
[56]. This fusion protein retains the capability of antibodies 
to bind to an appropriate receptor, and biological activity 
similar to recombinant IL-2. There has been studied anti-
HER2/neu IgG3–IL-2 effect on murine intestinal tumor 
cells expressing human HER2/neu. The use of this MAb–C 
caused significant tumor growth inhibition, while antibodies 
(anti-HER2/neu IgG3) had no effect.
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The other MAb–C, anti-erbB2 scFv-Fc–IL-2, was 
developed on the basis of CH2–CH3-domains of human 
IgG1 combined with murine scFv specific to HER2/neu. 
This fusion protein also retained both antibody and cytokine 
activity [56–58] that was confirmed on Т-cells of CTLL-2 line, 
as well as on BALB/c mice with induced ovarian cancer, 
the cells of which are characterized by high HER2/neu 
expression. Intravenous injection of scFv-Fc–IL2 protein to 
mice resulted in tumor growth reduction.

Mucin-1 (MUC-1) is a transmembrane protein naturally 
expressed on the surface of grandular epithelial cells. In 
carcinomas there is hyperexpression of this protein on 
tumor cell surface. Thus, MUC-1 can serve as a marker 
antigen, and specific antibodies can be used for cytokine 
target delivery in tumor microenvironment. For this purpose 
scFv of murine MUC-1-specific antibodies was genetically 
fused with N-terminus of a hinged region of human IgG1 
Fc-region, and IL-2 was fused with С-terminus of Fc-region. 
The obtained fusion protein retained the capability to bind 
to MUC-1 expressed by human mammary adenocarcinoma 
cells, as well as biological activity of IL-2 consisting in its 

capability to induce the proliferation of CD25+-lymphocytes 
and activate NК-cells [59].

In Hodgking’s lymphoma an increased number of CD30 
is secreting on the surface of tumor cells, and antiCD3 
antibodies were also used for producing fusion proteins 
for IL-2 delivery. Recombinant anti-CD30 MAb–IL-2 was 
produced on the basis of scFv-region of monoclonal anti-
CD30 antibody, N-terminus of which was fused with IgG1 
hinged region, bound by С-terminus with IL-2. Anti-CD30 
MAb–IL-2 was bifunctional, activated Т- and NК-cells, 
induced in vivo IFN-γ production. In vivo studies supported 
the suggestion that this fusion protein can be used in 
specific immune therapy in Hodgking’s lymphoma [60].

Characteristic marker of non-Hodgkin’s lymphoma is 
CD20. Fusion anti-CD20 MAb–C were fully humanized 
murine monoclonal antibodies genetically bound to IL-2. 
In experiments anti-CD20 MAb–IL-2 induced apoptosis 
of CD20+ Daudi cells (human lymphoma cell line) and 
retained their capability to bind to a specific receptor and 
exhibit antibody-dependent cell-mediated cytotoxicity. 
The produced fusion protein induced antitumor immune 

Antibody-Cytokine Fusion Proteins

T a b l e  1

summary table on existing fusion proteins based on cytokines and antibodies to antigens presented in the table

Cytokines
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DNC Id HER2/neu TAG-72 CD30 hMHC II GD2 EpCAM CEA ED-A ED-B FAP CD20 TfR MUC-1
IL-2 + + + + + + !! + ! + +
IL-6 +
IL-7 +
IL-10 + +
IL-12 + + + + + !
IL-15 + + +
IL-17
IFN-α + + +
IFN-γ + +
GM-CSF + + + +! + + +
TRAIL + +
TNF + + + +!!
FasL + +

H e r e: GM-CSF — granulocyte macrophage CSF; TRAIL — TNF related apoptosis-inducing ligand; FasL — ligand for Fas membrane 
molecule; DNC — dancyl chloride (5-(dimethylamino)naphthalene-1-sulphonyl chloride); Id — idiotypic antibodies, analogs or antigen 
imitators; EpCAM — epithelial cell adhesion molecule; CEA — carcinoembryonic antigen; TfR — transferring receptor; ED-B, ED-A — 
isoforms of fibronectin; FAP — stromal fibroblast activation protein; ! – phase I clinical trials; !! – phase II clinical trials.
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response in animal model on SCID mice, which were 
injected with human lymphoma line cells Daudi Burkitt 
CD20+ intravenously simulating disseminated lymphoma 
[61].

MAb–iL-12. IL-12 is a heterodimer protein with molecular 
mass of 75 kDa [62]. Its main producers are monocytes, 
macrophages, as well as dendritic cells, neutrophils and 
lymphocytes. IL-12 activates the proliferation and cytotoxic 
activity of Т- and NК-cells. The main effect is the stimulation 
of IFN-γ production, which can inhibit tumor growth and 
increase the expression of МНС class I genes. In addition, 
IL-12 has anti-angiogenic activity due to the regulation of 
IFN-γ-dependent proteins IP10 and MIG (monokine induced 
by IFN-γ). These cytokines inhibit chemotaxis of endothelial 
cells and block their differentiation [63].

IL-12 exhibited potential antitumor activity on various 
animal models as well as was used for the treatment of viral 
and bacterial infections [64]. However, in clinical studies IL-
12 was shown to be less active, and there were severe side 
effects [65, 66].

In vivo studies demonstrated that fusion anti-HER2/neu 
MAb–C(IL-12) retains the functions of IL-12 (heparin-binding 
activity, the capability to induce IFN-γ secretion) [26] and 
IgG (capability to bind to human antigen HER2/neu) [67]. 
A prolonged administration of anti-HER2/neu MAb–IL-12 in 
mice was also shown to cause a long-term immune response 
spreading over other antigens [68].

In order to study MAb–IL-12 anti-angiogenic activity there 
were developed fusion proteins against human fibronectin 
ED-B domain (an angiogenesis marker secreted by tumor 
and endothelial cells). In vitro studies demonstrated that the 
obtained recombinant protein possessed IL-12 biological 
activity and antibody specificity. Anti-ED-B MAb–IL-12 
capability was shown to inhibit tumor growth in vivo on 
mice models (colon carcinoma and teratocarcinoma). 
Moreover, a recombinant protein was localized in tumor 
microenvironment prior to IL-12. In addition, there were no 
side effects [69].

The comparison of anti-HER2/neu MAb–IL-12 effect 
with combined administration of anti-HER2/neu MAb and 
IL-12, as well as IL-12 monotherapy proved the significance 
of physical fusion of antibodies with cytokine to increase 
antitumor activity. The researchers link it to cytokine 
placement in extracellular matrix of tumor microenvironment 
[70].

There were also produced anti-antigen CD30 and CEA 
fusion proteins (See Table 1). In vitro studies demonstrated 
them to retain both cytokine function (the ability to induce 
secretion by IFN-γ Т- and NК-cells), and antibody function 
(the ability to bind to antigen) [71, 72]. AS1409 is a 
fusion protein based on humanized antibodies specific to 
fibronectin and bound to IL-12. Its first clinical trials indicate 
the approach safety. In this study maximum tolerated dose 
was used and effectiveness against metastatic melanoma 
was demonstrated [73].

MAb–GM-CSF. GM-CSF refers to a group of 
glycoproteins regulating the proliferation and differentiation 
of hemopoietic cells [74]. The main field of this cytokine 
application is prevention of neutropenia and neutropenic 
complications in patients with highly decreased neutrophils in 

blood after cytostatic chemotherapy due to different tumors 
[75, 76]. In addition, GM-CSF regulates the expression 
of MHC class II and antigen-presenting capability of APC 
(antigen-presenting cells). A wide range of action makes 
this cytokine be potential medication for adjuvant antitumor 
immune therapy [77].

Systemic GM-CSF injection is accompanied by a number 
of side effects: fever, shiver, myalgia, loss of appetite, 
drowsiness, and ostealgia [78, 79]. In order to reduce 
negative effects and to increase anti-tumor activity, GM-
CSF was genetically bound to antibodies against various 
tumor antigens (See Table 1).

Transferin (Tf) is a glycoprotein transferring iron ions 
necessary for cell proliferation. Tf receptor’s hyperexpression 
is observed on several types of cancer cells. GM-CSF fused 
with anti-TfR antibodies was shown on a mice model to 
demonstrate antitumor activity resulting in growth reduction 
of murine metastatic hepatic neuroblastoma (NXS2) and 
lung metastases of murine colon carcinoma (СТ26). The 
data obtained indicate possible usage of a similar fusion 
protein to treat patients with malignant tumors characterized 
by TfR hyperexpression [80].

There were produced chimeric (human/mouse) anti-
ganglioside GD2-antobodies. This fusion protein exhibited 
antigen-dependent cell associated cytotoxicity and 
complement-dependent cytotoxicity in neuroblastoma 
cells NMB7 and mononuclear cells isolated from the same 
patients. In vivo studies showed anti-GD2–GM-CSF to 
be characterized by higher adhesive and degranulating 
property compared to antibodies or cytokines. Currently, 
the products based on anti-GD2–GM-CSF and anti-GD2–
IL-2 are under clinical trials [81, 82].

Other researchers studied the biological activity of anti-
МНС II–GM-CSF. This fusion protein demonstrated the 
properties of both cytokine (the capability to induce the 
formation of hemopoietic progenitor cells from bone marrow 
mononuclear cells), and also antibodies (the capability to 
bind to tumor cells expressing MHC class II). The studies 
of biodistribution on a murine xenograft model proved this 
fusion protein to be capable of selecting specifically human 
malignant B-cells [83].

Bifunctionality of fusion MAb–C was also demonstrated 
on anti-ED-B–GM-CSF. This fusion protein exhibited high 
tumor specificity and capability to reduce significantly tumor 
growth in experiments on mice 129SvEv with induced 
teratocarcinoma F9 and adenocarcinoma of colon С51. In 
addition, an antimetastatic effect was demonstrated on the 
same models [84].

For the purpose of in-depth study of MAb–C biological 
activity, effects and mechanisms of action, there were 
produced murine anti-HER2/neu–GM-CSF [85]. This fusion 
protein retained the property of cytokine, namely, the ability 
to stimulate the growth of АВС-З1 line myeloid cells, as well 
as activate murine macrophage cells J774.2 and enhance 
antibody-dependent cytokine-mediated lysis in tumor cells. 
On the other hand, anti-HER2/neu–GM-CSF binds to murine 
tumor cells СТ26 expressing HER2/neu receptors on its 
surface, and enhances anti-HER2/neu immune response. 
An important point is that this fusion protein causes tumor 
growth rate reduction on those models, on which the use of 
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antibodies only does not provide protection. These findings 
support once again the potential significance of anti-HER2/
neu–GM-CSF for managing patients with HER2/neu-
positive tumors.

MAb–TNF. Tumor necrosis factor is an extracellular 
multifunctional cytokine produced mainly by monocytes and 
macrophages [86, 87]. TNF induces apoptosis in endothelial 
cells in new-formed vessels promoting agents to penetrate 
into tumor mass and causing hemorrhagic tumor necrosis 
[88]. However, systemic injection of this protein is strictly 
limited by high toxicity consisting in a syndrome like septic 
shock resulting in multiple organ failure.

In order to reduce a therapeutic dose of high-activity 
protein, fusion protein L19–TNF was produced, which 
should provide TNF target delivery in tumor blood vessels 
[89]. L19–TNF is anti-B-domain fibronectin L19 antibodies 
bound to TNF. Preclinical studies on animals demonstrated 
L19–TNF bifunctionality. In phase I-II of clinical trials there 
were chosen safe therapeutic doses of the drug. Non-
hematological toxicity at such doses was shown to be 
low, although in rare cases severe myelosuppresion was 
recorded [90, 91].

conclusion 
To sum up the described data, we can specify the main 

advantages of applying fusion proteins based on antibodies 
and cytokines.

1. A recombinant fusion protein is found in tumor 
microenvironment more quickly than the cytokines alone. 
The presence of cytokine receptors in normal cells provides 
competition for fusion protein molecule binding that reduce 
MAb–C accumulation in the tumor area. Nevertheless, 
the experiments on animal models and in clinic showed 
MAb–C concentration in tumor is higher than via systemic 
injection of free antibodies. MAb–C being concentrated 
mainly in tumor has less toxic effect on normal organs 
and tissues. Due to its relationship with specific antigen, 
cytokine washout period increasesand therapeutic effect is 
prolonged.

2. A fusion protein possesses higher antitumor activity 
than combined therapy of antibodies with cytokine, or 
cytokine in monotherapy (IL-12). Physical combination of 
two biologically active proteins is likely to provide “correct” 
spatial positioning of cytokine in extracellular matrix of 
tumor microenvironment [70]. The represented data indicate 

the possibility to reduce an effective dose of cytokine and 
injection frequency compared to cytokine monotherapy.

Currently, there being studied simplified versions of 
fusion proteins based on incomplete antibodies, which can 
ease the product technology. However, they have a number 
of disadvantages:

lower antigen binding ability;
quicker washout period;
incomplete set of antibody functions (e.g., Fc-region 

provides induction of antibody-dependent cell-mediated 
cytotoxic activity).

Over the past decade MAb–C with various functional 
orientations have been produced and are under clinical 
trial. One of the directions in this area is the production of 
antibodies fused with two different cytokines – di-cytokine 
fusion proteins (Table 2). The source of the idea is the study 
on the combination of several cytokines, which indicate 
significant increase of antitumor activity [92–96].

Gene engineering enabled to produce recombinant 
antibodies using different expression systems — from 
bacteria to mammalian cells. The production of fusion 
proteins from plants with temporary expression is being 
developed intensively. There being searched combined 
molecules aiming to enhance therapeutic effect. Just a 
limited number of MAb–C succeeds in passing clinical trials, 
though their appearance at pharmaceutical market is just a 
matter of time.
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