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There have been presented up-to-date data on cerebral infrared oximetry application in intracranial hemorrhage. The principles of the 
technique enabling to perform noninvasive monitoring of cerebral tissue oxygenation have been given.  There has been shown the comparability 
of cerebral oximetry and invasive assessment techniques of cerebral tissue saturation, jugular oximetry and cerebral microcirculation. Some 
systems for oxygen status determination have been presented. Special attention has been paid to the use of coefficients and indices of cerebral 
infrared oximetry to assess functional state of cerebral microvasculature and cerebral autoregulation.

There have been described prospects for further development of cerebral oximetry as a part of many-component monitoring in craniocerebral 
injury and hemorrhagic strokes.
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Infrared oximetry (synonym — infrared spectrometry) 
is associated with F. Jobsis, who was the first to apply it 
in vivo in 1977. He showed radiation intensity changes to 
correlate with the concentration of natural chromophores: 
oxyhemoglobin, deoxyhemoglobin, cytochrome oxydase, 
melanin, etc [1, 2].

At first, infrared oximetry was not quantitative and 
showed the tendency for oxygenation change only, 
and recorded signals had significant fluctuations and 
tendency to artifacts [3, 4].

Further development of the technique led to tissue 
oximetry and cerebral infrared oximetry (CO) in 

particular, as a result of which a routine assessment of 
oxygen status of cerebral parenchyma [5–9] in various 
cerebral pathologies became possible. It enabled to use 
CO as one of neuromonitoring methods. 

CO technique is based on the effect of light (wavelength 
from 680 to 1000 nm) penetration through human 
tissues, and light absorption by natural chromophores: 
oxyhemoglobin (HbO2), deoxyhemoglobin (HHb) and 
cytochrome oxydase. Infrared radiation is delivered from 
the source via fiber-optic cable (the so called optode) to 
skin sensors (detectors) consisting of an emitter and a 
transmitter. These sensors are located symmetrically in 
relation to midline and spaced 3.5–6 cm apart from one 
another (Fig. 1) [10].

A light beam from a transmitter penetrates through 
soft coverings of the head, cranial bones, cerebral 
parenchyma, and scattering falls on an emitter. 

Concentration of chromophores: HbO2, HHb and 
cytochrome oxydase — is found to be a variable value 
and depend on the level of tissue oxygenation and 
metabolism [11]. Concentration of other light-absorbing 
substances, such as melanin and bilirubin, and other 
water-soluble fractions, has a trace character, and can 
be out of calculations [12, 13].

Bouguer–Beer–Lambert modified formula I=I0e–kλl is 
used to calculate the concentration of chromophores 
[11,14–16].

A monochromic light beam with intensity I0 passing 
through an absorbing substance layer, with thickness 
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fig. 1. Cerebral oximetry use scheme
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l comes out attenuated up to intensity I determined by 
the following expression I=I0e–kλl, where kλ — index of 
absorption — coefficient dependent on wavelength λ of 
absorbed light. 

This calculation method is completely applicable 
in neonatology, since children skull is rather thin to be 
examined by light from one side to another [15, 16]. 
However, in adults relative thickness of scalp, cranial 
bones and brain makes a standard spectroscopy 
impossible, therefore, CO should be used in a reflection 
mode, when an emitter and a transmitter are situated on 
one head side. CO in reflection mode depends on a part 
of the light, which passes through brain tissue. Human 
head consists of several layers of different tissues, 
which exhibit different scattering properties and have 
different concentrations of compounds absorbing light. 
As a result, for correct chromophore determination in 
brain tissues, the introduction of nonlinear coefficients to 
determine light absorption and scattering was required 
[16]. Moreover, in order to exclude from calculations the 
blood in cranial integument, the use of dual receivers 
situated 2.5–3 cm apart from one another has been 
suggested recently (See Fig. 1). 

At present, several unique CO indices are offered:
1. rSO2 (regional saturation O2) — INVOS and 

EQUANOX monitors manufactured by Covidien and 
Nonin Medical (USA), respectively;

2. TOI (Tissue Oxygenation Index) — NIRO monitor 
manufactured by Hamamatsu Photonics (Japan);

3. rSctO2 (regional cerebral tissue saturation O2) — 
Fore-Sight monitor manufactured by Casmed (USA).

A lot of studies have shown high degree of reliability 
of the indices represented that makes oxygen status 
monitoring a standard procedure [17].

For additional assessment of cerebral oxygen status 
there have been offered various coefficients and indices 
showing functional state of microcirculatory bloodstream 
and cerebral autoregulation: 

1) hemispheric asymmetry coefficient — ratio of 
saturation difference of both hemispheres to their smaller 
value, expressed as a percentage [8, 18];

2) hemodynamic compliance index — CO values-to-
mean AP ratio [19];

3) cerebrovascular reactivity of cerebral saturation 
index (ТОx);

4) total hemoglobin reactivity index (THx), etc.
CO has found its general use in the assessment of 

changes in brain regional oxygenation and oxygen status 
in traumatic brain injury [20–22] and cerebrovascular 
pathology [3, 6, 23], as well as in patients with pathologies 
of carotid arteries [24].

Cerebral saturation changes in patients with 
intracranial hemorrhages are found to correlate 
significantly with oxygenation changes in the bulb of 
jugular vein (SjvO2), as well as with brain tissue oxygen 
tension according to invasive cerebral tissue oximetry 
(PbtO2) [25, 26]. Cerebral autoregulation in patients 

with traumatic brain injury and hemorrhagic strokes 
based on the comparison of reactivity indices has shown 
that total hemoglobin reactivity index (THx) has highly 
reliable relationship with intracranial pressure reactivity 
index (PRx) [19]. In addition, there has been found a 
direct significant correlation between other cerebral 
autoregulation indices: cerebral saturation reactivity 
index (ТОx) and linear cerebral blood flow reactivity 
index (Sxa) indicating a high accuracy and safety of CO 
findings [27].

The results obtained by THx and ТОх in about half 
of patients enabled to determine “optimal” cerebral 
perfusion pressure (CPPopt) [19, 28] that made CO 
indispensible in targeted therapy improvement in patients 
with intracranial hemorrhages, particularly in cases when 
intracranial pressure monitoring is impossible for some 
reason [29–32]. CO application enables to estimate 
brain perfusion changes non-invasively [33–37].

P. Taussky et al. [38] studied the correlation between 
the parameters of computed tomography brain perfusion 
and cerebral oxygenation level in patients with non-
traumatic intracranial hemorrhages and revealed a 
highly reliable correlation between SсtO2 and volumetric 
CBF. Similar data were obtained when comparing CO 
and positron emission tomography findings [39].

It should be noted that by now no ideal technique has 
been found to measure the regional total cerebral blood 
volume (CBV) or cerebral blood flow (CBF) bedside 
and effectively, quickly, repeatedly and non-invasively. 
The existing methods applied to measure CBF are 
technically difficult, laborious, and use radioactive 
materials or require transportation of patients to perform 
brain imaging [40]. 

On the other hand, since CO can measure HHb and 
HbO2, it is possible to measure total hemoglobin (THgb) 
[33, 35, 36, 41]. On the assumption that the concentration 
of hemoglobins is the combination of a larger number 
of smaller levels of hematocrit, and this correlation is 
constant during the investigation, and changes in THgb 
mean CBV change according to the following equation: 
ΔCBV=[THgb]·(0.89/Hgb).

Thus, it became possible to make a noninvasive 
assessment of brain perfusion, and it was used in the 
management of patients with non-traumatic subarachnoid 
hemorrhages and showed high reliability [39, 42–45].

At the same time, the findings of cerebral perfusion 
computed tomography and CO in patients with traumatic 
brain injury, on the contrary, showed a reliable correlation 
between cerebral oxygenation level and regional CBV 
[46]. The authors explained the peculiarities of brain 
perfusion and cerebral oxygenation in traumatic and 
vascular injury of brain by the fact that regional CBF 
in contrast to regional blood volume can also depend 
on arterial bed condition, and therefore, can vary 
significantly in cerebral angiospasm. 

Moreover, CO introduction in clinical practice enabled 
to find a number of its use limitations. Soft tissue 
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hemorrhages and skull fractures were shown to result 
in local change of natural chromophore concentration 
preventing from correct determination of regional 
saturation in brain parenchyma [47, 48]. Similar errors 
are described if sensors are located in the areas of high 
concentration of hair follicles, in sinuses and frontal 
sinuses [8].

As far as CO measures saturation of brain pooled blood 
(in arteries, veins and capillaries), it is still impossible to 
determine separate saturation of gray and white matter 
[8, 19], as well as to perform CO and magnetic resonance 
imaging simultaneously [15, 16]. Moreover, the existing 
cerebral oximeters are incompatible with МРТ that limits 
their application in simultaneous investigations [15, 16]. 

Some researchers [22] suppose that critical intracranial 
hypertension can reduce the accuracy of brain saturation 
measurements related to impaired venous outflow and 
development of vasogenic brain edema.

Finally, CO limitations are individual changes in 
chromophore levels that reduce the accuracy of cerebral 
saturation absolute values, therefore, until recently, only 
the dynamics of indices was of practical importance. 
However, developed in recent years cerebral infrared 
spectroscopy using coherent-light sources (lasers) has 
improved significantly monitoring results and enabled 
some researchers to position such devices as “an 
absolute cerebral oximeter” [26].

It is worth mentioning that cerebral oximetry is a 
fast-developing technology, which has the potential for 
technological elaboration. The technique improvement, 
accuracy and specificity increase will expand its 
application in clinical practice. CO is not only a 
promising, cheap, non-invasive bedside technique used 
for volumetric CBF measuring, but also the basis for 
brain function and structure mapping [40, 49–52]. 

There are the prospects of development and 
introduction into practice of so called hybrid devices 
combining electroencephalography and CO. In English 
literature such devices are called “Brain-Computer 
Interface”. They make it possible to increase resolution 
of brain functional state mapping (Fig. 2) [53–59].

The same objective is pursued by CO integration 

into control and imaging systems, such as computed 
tomography, magnetic resonance imaging, and duplex 
ultrasonic units [4]. Portable CO devices integrated with 
wireless telemetry are being tested [42].

High hopes are put on such technologies as cerebral 
infrared spectroscopy with temporal, phase and spatial 
resolution [60–63]. 

Conclusion. Cerebral infrared spectroscopy has a 
number of advantages over other monitoring techniques. 
It provides continuous non-invasive control of brain 
oxygen status, being relatively easy to use and at the 
same time – rather sensitive to record brain oxygenation 
changes.

Real time monitoring of brain tissue saturation 
changes using infrared spectroscopy enables to detect 
early critical ischemic events, before they are manifested 
clinically. It makes the technique feasible in modern 
complex of neuromonitoring. 
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