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This review emphasizes the current knowledge related to optical coherence tomography (OCT) as a non-invasive diagnostic tool to perform 
ex vivo and showing great potential for in vivo structural imaging of features in the oral cavity. OCT technology can generate high-resolution 
cross-sectional and en-face images of the internal architecture of the investigated sample (2–3 mm in depth). To this goal, en-face time domain 
OCT (TD-OCT) and spectral domain OCT (SD-OCT) were employed. Topics included in this review refer to OCT non-destructive evaluations 
of: dental abfraction and attrition, material defects and micro-leakages at the tooth-filling interface, temporal-mandibular joint disc, quality of 
bracket bonding on dental hard tissue, prosthetic restorations and micro-leakages at prosthetic interfaces, root canals, presence or absence of 
apical micro-leakages, and osteo-integration of dental implants and of bone grafting materials. OCT revealed internal features of the material 
investigated with greater sensitivity than current diagnostic methods. We put our research in context with others’ results but the review reflects 
primarily our joint group experience and it presents images collected with our OCT systems only. The studies demonstrate the viability of OCT as 
a useful tool in dental medicine practice, as well as in research. Being completely non-invasive, OCT can be extended to soft tissue. Both TD and 
SD implementations prove the unique capabilities of OCT. For handheld scanning devices it is expected that the swept source principle (as one 
of the SD possibilities) will prevail, due to its high speed that allows for the reduction of distorting effects caused by the involuntary movements 
of the hand and of the patient. For high transversal resolution investigations, especially in more research oriented studies, it is expected that 
en-face TD-OCT will continue to coexist with SD-OCT methods, offering additionally a low cost quick provision of en-face view and compatibility 
with dynamic focus. Dynamic focus, that is the simultaneous adjustment of focus and coherence gate in depth is incompatible with SD-OCT 
methods and require repetitions of acquisitions under different focus in order to improve the transversal resolution, or more complex heads with 
division of the optical path in the object arm along different focus adjustments. In this respect, en-face TD-OCT provides a lower cost alternative 
to high transversal resolution of static samples.

We have shown that complementary studies are possible embracing OCT with more traditional methods, such as confocal microscopy and 
microCT. Combination of principles is expected to evolve due to their limitations when considered separately.
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OCT systems. In the past decades, optical coherence 
tomography (OCT) evolved to become a powerful technique 
for imaging of transparent and translucent structures [1–3]. 

OCT is based on low-coherence interferometry (LCI), which 
can achieve micron-scale depth resolved quantification. 
The first LCI application in the biomedical optics involved 
the measurement of the eye length [4]. An LCI system is 
generally based on a two-beam interferometer. Application 
of such an interferometer to deliver A-scans was facilitated 
by a technical advantage: when moving the mirror in the 
reference path of the interferometer, not only is the depth 
scanned, but a carrier is also generated. The carrier 
frequency shift is Doppler shifted due to the longitudinal 
scanner itself. Adding lateral or angular scanning of the 
optical beam across the target, thin section slices can be 
achieved non-touch and with high axial resolution [5].

En-face time domain OCT (TD-OCT). Collecting 
many A-scans from various adjacent transverse positions 
generates B-scan images. The lines in the raster generated 
correspond to A-scans and are oriented along the depth 
coordinate. B-scan images can also be produced from 
T-scans at different depths. In the case of these T-scans, 
the transversal scanner produces the fast lines in the 
image [6–8], by controlling either the transverse scanner 
along the X-coordinate (horizontal), along the Y-coordinate 
(vertical) or along a polar angle θ, while the other two 
scanners remain fixed. This procedure has a clear 
advantage in comparison with the A-scan based B-scan 
procedure as it allows for the production of OCT transverse 
(or en-f­ace) images for a fixed reference path; such images 
are called C-scans.

For TD-OCT the path length of the reference arm is 
scanned in time. Interference (i.e., the series of dark and 
bright fringes) is only achieved when the optical path 
difference (OPD) lies within the coherence length of the 
optical source. The envelope of this modulation changes as 
the OPD is varied; the peak of the envelope corresponds to 
the path length matching [9–11].

The schematic diagram of the en-f­ace TD-OCT system 
used in our studies is depicted in Figure 1. The optical source 
(OS) employed in this regime of operation was a pigtailed 
superluminescent diode (SLD) emitting at 1300 nm and 
with a spectral bandwidths of 65 nm. This determines an 
OCT longitudinal resolution of 8.6 µm in teeth. Depending 
on the ratio between the focal lengths of lenses L3 and 
L4, the lateral resolution and maximum achievable lateral 
size of the en-f­ace images can be tweaked. We used two 
configurations:

(i) Low numerical aperture (NA) interface optics, which 
allows 1 cm lateral image size.

(ii) High NA interface optics with a maximum 1 mm lateral 
image size.

In addition to the OCT channel, the imaging system is 
equipped with a confocal channel using as light source a 
second SLD emitting at 970 nm. This channel was used 
in some of the investigations to guide the adjustment of 
the sample as well as to provide some complementary 
reflectivity measurements.

Light from the OS is injected into the system via a first 
directional coupler (DC1), which splits the light toward the 

two arms of the interferometer, the probing and reference 
arms respectively. The probing beam is reflected by 
the dichroic beam-splitter (BS1) and then sent via the 
galvanometer scanners SX and SY towards the sample. 
BS1 is a hot mirror that reflects light of wavelengths longer 
than 1 µm. Two telescopes incorporated between these 
elements conveniently alter the diameter of the beam to 
match the aperture of different elements in the probing path 
and convey a probing beam of 8 mm in diameter through 
the microscope objective (MO) pupil plane when a high 
resolution mode is required. The two transverse scanners 
SX and SY are separated here using telescopes to project 
a flat wave front on the target under high NA. Lenses L1, 
L2, and L4 have focal lengths of 7.5 cm, while lens L3 has 
a focal length of 3 cm. The MO is a scan lens (focal length 
1.8 cm) to prevent image degradation and distortion during 
scanning. Hence a lateral resolution of around 2 µm was 
experimentally measured in the confocal channel and 
better than 5 µm in the OCT channel. Light backscattered 
by the sample passes a second time through the object arm 
and is guided via the DC1 toward the second single mode 
directional coupler (DC2), where it interferes with the light 
coming from the reference arm. Both output fibers from the 
second coupler are connected to two pin photo-detectors 
in a balanced photo-detection (BPD) unit. After digitization, 
the OCT signal is rectified and low-pass filtered in the 
processing block.

The confocal channel operates at a different wavelength 
than that of the OCT, to allow the utilization of a high gain 
silicon avalanche photodiode (APD). The light from the SLD 
at 970 nm is collimated by a MO4 and reflected by a beam-
splitter (BS2) (20% reflection) toward BS1. Light at 970 nm 
is transmitted via BS1 and BS2 toward the APD. The photo-
detected signal is amplified and low-pass filtered in LPF. 
A computer-driven translation stage (TS) is used to alter 
the reference path length in order to acquire C-scan image 
frames from different depths and thus to provide depth 
scanning in the B-scan regime.

The scanning procedure is similar to that used in any 
confocal microscope, where the fast scanning is en-f­ace 
(line rate, using the galvanometer scanner SX) and the 
frame scanning is much slower (at the frame rate, using 
the galvanometer scanner SY) [12]. The frame grabber 
in Figure 1 is controlled by signals from the generators 
driving SX and SY galvanometer scanners. The SX 
galvanometer scanner is driven with a ramp at 500 Hz and 
the SY galvanometer scanner with a ramp at 2 Hz. In this 
way, an en-f­ace image, in the plane (X, Y) is generated at 
constant depth. The next en-f­ace image at a new depth is 
then generated by moving the TS in the reference arm of 
the interferometer and by repeating the (X, Y) scan. Ideally, 
the depth interval between successive frames should be 
much smaller than the system resolution in depth, and the 
depth change is applied only after the entire en-f­ace image 
has been collected. However, in practice, to speed up the 
acquisition, the TS was moved continuously.

To construct B-scan images, no signal is applied to the 
frame scanner, while the line scanner is driven with the 
same signal as in the C-scanning regime, and the TS is 
moved along the optical axis of the reference beam. In this 
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case, the frame grabber is controlled by signals from the 
generator driving the SX (or the SY) with a ramp at 500 Hz, 
and TS is moved over the depth range required in 0.5 s. 
Thus, an OCT cross section image is produced either in the 
plane (X, Z) or (Y, Z).

In the images presented in this manuscript, no other 
phase modulation was employed apart from that introduced 
by the galvanometer scanner [6, 8] determining the line in 
the raster.

In the low NA configuration, L3 and L4 have been removed, 
only a single optical component being placed between the 
SX, SY and the sample (MO, focal length 4 cm) allowing 
a larger lateral size image. Consequently, the transversal 
resolution was reduced to 15 µm.

Spectral domain OCT (SD-OCT). In SD-OCT, the 
spectrum at the output of the LCI is measured. A Fourier 
transformation of the acquired spectrum delivers an A-scan, 
without any movement in the reference arm [13–16]. Due to 
the fact that all depths are obtained in one measurement, the 
speed of producing B-scan images improves dramatically, 
as well as the signal-to-noise ratio in comparison to 
TD-OCT. As drawbacks, SD-OCT cannot provide a faster 
production of en-f­ace images or axial ranges longer than 
those achievable in TD-OCT. SD-OCT can be implemented 
in two ways: swept source OCT (SS-OCT) and camera 
based, or spectrometer based (Sp-OCT). In some papers, 
one or both of these methods are referred to as Fourier 
domain OCT methods. Both types of methods have been 
employed in instruments we have assembled, we show here 
results obtained using the SS-OCT principle only.

A SS-OCT instrument was assembled, with a diagram 
similar to that used for TD-OCT (See Figure 1). In this case 
the OS is a fast SS and the photo-detector is changed to a 
faster one (over 200 MHz instead of 400 kHz). The SS is 
from Axsun Technologies Ltd. (central wavelength 1060 nm, 
sweeping range of 106 nm (measured at 10 dB), average 
output power of 16 mW, sweeping rate 100 kHz). A depth 

resolution determined by the SS tuning range of 12 µm in 
air was experimentally measured. The SS-OCT system was 
used in a low NA configuration; hence a lateral resolution of 
~14 µm was experimentally measured. The optical power 
on the sample is 3.6 mW. The DC2 output signals are sent 
to a fast balanced photo-detector BPD (model PDB460C, 
bandwidth 200 MHz, Thorlabs, Inc., USA). A 12-bit analog-
to-digital acquisition card digitized the output of the photo-
detector (Alazartech ATS9350, Canada), while an “in-
house” LabVIEW (National Instruments, USA) created 
software is used to produce, display, and record the 
images. The lateral size of the 3D images, determined by 
the amplitude of the voltages applied to the galvoscanners 
and the focal length of MO, is 4.4×4.4 mm, while their axial 
size, determined by the SS and the digitizer is 3.7 mm. The 
system is able to produce 500×640 pixels B-scan images 
(cross-sectional images of the sample) at a frame rate of 
100 Hz. 3D reconstructed images of 500×500×640 pixels 
could then be produced. The inspection of the volume can 
be performed either along B-scans or C-scans. As 500 
A-scans are used to construct each B-scan image, given 
the sweeping speed of the SS, a number of 100 B-scans 
are acquired per second. Hence, in order to acquire data 
to reconstruct a 3D volume made of 500 B-scans, 2.5 s are 
needed.

A Sp-OCT was also assembled, operated at 840 nm 
using an Aviva camera (Atmel, USA) at 29 kHz line rate. It 
was used in a single study here, to produce B-scans only, 
therefore its diagram is not shown. Interested readers can 
find more data in [17].

The various OCT applications in dentistry tested by 
our research group will be presented, considering each 
investigated structure at a time. The imaging systems, 
as presented above have been used at different stages 
of our research activity, in line with the OCT progress 
from TD-OCT towards SD-OCT methods. Compared with 
TD-OCT, SD-OCT methods present the advantage of 

Figure 1. Combined OCT/confocal 
imaging system anatomy. The 
OCT channel can operate either 
as an en-f­ace TD-OCT or as 
a SS-OCT system. OS: optical 
source (broadband source for the 
en-f­ace TD-OCT and swept source 
for SS-OCT); SLD: superluminescent 
diode; SX, SY: galvoscanners; 
APD: avalanche photodiode; 
L1–4: achromatic lenses; MO1–5: 
microscope objectives; BS1: dichroic 
beam-splitter; BS2: beam-splitter 
(20/80); LPF: low pass filter; TS: 
translation stage; M1, 2: flat mirrors; 
DC1, 2: directional couplers; BPD: 
balanced photo-detector (200 kHz 
bandwidth for en-f­ace TD-OCT and 
200 MHz for SS-OCT)
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increased phase stability for functional imaging. However, 
SD-OCT methods exhibit three main disadvantages: decay 
of sensitivity with OPD, impossibility to move the focus 
to the depth investigated while scanning and symmetric 
(ghost) images if the OPD=0 position crosses the object 
volume, problem known as mirror terms. The impossibility 
of focusing at selected depths renders the technology 
unsuitable to high transversal resolution microscopy, where 
TD-OCT is favored. If minute details are to be identified in 
the sample, then TD-OCT is better. In addition,  en-f­ace 
TD-OCT can deliver an en-f­ace image direct, while even 
the fastest SD-OCT systems known today still need several 
seconds to acquire all data volume and produce the en-
f­ace image by software means. In case large size images 
are to be generated from soft moving tissue, then SD-OCT 
methods should be used for its higher speed.

Clinical results. In dentistry, current scientific literature 
shows that OCT has been successfully used for acquiring 
images of: dental biofilm [18, 19], attrited teeth [20], enamel 
erosion [21], dentin structures [22–25], vertical root fractures 
[26–27], and incipient carious lesions [28–46]. It was also 
used for the evaluation of severity in advanced carious 
lesions [47] and re-mineralization of root caries [48], dentin 
re-mineralization [49–50], lesion progress in root caries 
[51], for quantification of re-mineralization [52–57], as well 
as for determining the efficiency of different agents in the 
inhibition of demineralization [52, 58–64]. Additionally, 
several research groups have demonstrated that OCT is 
capable to evaluate the oral mucosa [65–67], the micro-
leakages and internal defects of composite restorations 
[68–81], dental sealants [82–84] and endodontic fillings, the 
root internal structure [85, 86], the dental implant-abutment 
interface [87], and dental adhesives [88]. OCT is able to 
identify early signs of inflammation, unlikely to be detected 
by clinical examination. OCT imaging offers the exciting 
potential to detect peri-implantitis before significant osseous 
destruction occurs [89]. OCT has also been employed for 
periodontal diagnosis [90], for evaluating the integrity of 
dental prosthesis, their quality [91], their marginal fitting [30, 
47, 92, 93] and their adhesion to the tooth structure [94, 95], 
for monitoring the periodontal ligament changes induced 
by orthodontic forces [96, 97], and orthodontic interfaces 
[98–101].

Hard dental tissue (noncarious lesions)
Occlusal overload. Occlusal overload represents a major 

concern to dentists because of its undesired consequences, 
which include excessive tooth wear (pathological attrition 
and abfractions), dental crown and/or root fracture, failure 
of dental restorations, and temporo-mandibular disorders. 
An early diagnosis is essential in such cases. Our group 
has demonstrated that OCT represents a promising, non-
invasive alternative technique for early detection and 
monitoring of occlusal overload in bruxing patients [102–
104]. En-f­ace TD-OCT and fluorescence microscopy were 
used to investigate the wear of anterior teeth derived from 
young patients with active bruxism (strong, unconscious, 
and rhythmic grinding and/or clenching of teeth during the 
day or during the sleep [105], mainly caused by high levels 
of emotional stress and by occlusal interferences during 
protrusive or laterotrusive mandibular movements) [103]. 

The teeth presented first-degree pathological wear 
established through a tooth wear index (TWI), which was 
proposed by Smith and Knight in 1984 in order to score the 
wear of all four visible dental surfaces [106]. In our study 
the TWI score equals 1 (showing loss of enamel surface 
characteristics without exposing dentine, with a minimal loss 
of contour). The combination of information collected by 
OCT and fluorescence microscopy revealed a characteristic 
pattern of enamel cracks that reached the tooth surface.

En-f­ace TD-OCT was also used to investigate extracted 
anterior teeth with a normal crown morphology (without 
pathological attrition), which derived both from patients with 
active first-degree bruxism diagnosed by using BiteStrip 
devices and from subjects without parafunction [103]. The 
teeth from non-bruxing patients revealed a homogenous 
structure of the superficial enamel on the en-f­ace TD-OCT 
images. Despite the normal crown morphology, the teeth 
extracted from patients with first-degree bruxism showed 
signs of enamel damage in the OCT images. This consisted 
of a characteristic pattern of cracks, which did not reach the 
tooth surface (Figure 2).

Abf­raction and attrition. The evolution of the pathological 
dental wear over time is essential for the prognosis of teeth 
and for the initiation of the most suitable therapeutic steps. 
Monitoring these lesions helps to determine whether a 
particular phenomenon is progressive or not.

Our research team demonstrated microstructural 
characterization of abfraction by en-f­ace TD-OCT [107, 
108]. The investigation of bicuspids with normal crown 
morphology revealed a homogenous structure of the buccal 
cervical enamel. Occlusal-overloaded bicuspids (derived 
from patients with active bruxism) were imaged by the 
system in Figure 1, which produced constant depth OCT 
images (C-scans) as well as cross cross-section OCT 

Figure 2. Fracture lines (FL) in enamel, a zoom approach in 
an occlusal overloaded anterior tooth, with a normal crown 
morphology at 0.4 mm inside (measured in air) and 6 mm 
lateral size. Reproduced with permission of the say it, OSA, 
SPIE [103]
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images (B-scans). These images revealed the wedge-shape 
loss of cervical enamel and the damage of the underlying 
dentin. The high-occlusal forces produced a characteristic 
pattern of large cracks, which reached the tooth surface 
(Figure 3).

In other studies from our group [109–111], artificially 
induced defects (attrition and abfractions) in teeth were 
similar to those observed in the clinic (scored by the TWI 
in terms of enamel and dentine loss). The loss of dental 

hard tissue can be qualitatively evaluated by inspecting 
either two-dimensional images or 3D reconstruction of 
volumes. Our study has shown that a more accurate 
figure on evaluation of such processes is provided by 3D 
reconstructions, as individual B-scans may show less loss. 
When the 3D reconstruction was considered, the maximum 
depths of the abfractions were larger than the values 
measured in some individual B-scan images, leading 
to: 0.41 mm (Figure 4 (C)), 0.98 mm (Figure 4 (D)), and 

Figure 3. OCT images of a sample of occlusal overloaded bicuspid: (A) C-scan image revealing 
the cracks that are penetrating the cervical dentine, reaching the surface of the abfraction (lateral 
image size 4×4 mm, at a depth of 910 µm from the top measured in air); (B) B-scan image of the 
same microstructural defects (image size 4×4 mm; 2.5 mm in air). Reproduced with permission of 
the say it, OSA, SPIE, etc. [108]

OCT — Non-Invasive Investigations in Dentistry

Figure 4. 3D reconstructions of the vestibular cervical areas of a premolar sample, where abfraction usually appears: (A) the initial 
area with no modification; (B)–(E) after different levels of abfraction evolution. The size of the volumes is 3.2×3.2 (lateral)×2.7 mm 
(depth measured in air). Reproduced with permission of the copyright owner [110]

Figure 5. 3D reconstructions of the incisal parts of the incisors where the attrition was induced: (A) the initial volume with no 
modification; (B)–(E) after different levels of attrition evolution. The size of the volumes is 3.2×3.2 (lateral)×2.7 mm (depth 
measured in air). Reproduced with permission of the copyright owner [111]
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1.173 mm (Figure 4 (E)). Using the 3D reconstructions of 
the attritions, again, the maximum depth values obtained 
were different from the values measured on the B-scan 
images: 0.33 mm (Figure 5 (B)), 0.67 mm (Figure 5 (C)), 
0.83 mm (Figure 5 (D)), and 1.083 mm (Figure 5 (E)). The 
OCT system used for this study presented a minimum 
volume detectable change in the sample of ~2352 µm3.

The amount of hard dental tissue lost, as well as the 
evolution of such loss is important. Providing these two 
pieces of information constitutes a useful guidance for the 
clinical evaluation of abfraction and attrition.

Another major advantage of this technology is provided 
by the speed of acquisition, more than 100 times faster 
than the TD-OCT used in our previous studies [102–104]. 

The method is equally applicable to faster systems working 
at over 1-MHz line rate [112, 113]. A high-speed SS-OCT 
may therefore prove a more suitable clinical tool to quantify 
abfraction and attrition.

Dental fillings. En-f­ace TD-OCT shows promise in 
the examination of structural quality of these restorations. 
In several of our preliminary studies, amalgam [114], 
composite resin [115–118], and compomer [119] have been 
used to restore teeth. The amalgam (by virtue of its metallic 
composition) completely obscures the tooth interior beneath 
it in any OCT image. However, the other two materials, 
by virtue of their small absorption coefficients, allow for 
the visualization of internal landmarks such as the dental 
enamel junction in the tomogram (Figure 6), obtained with 
the system in Figure 1 [120].

OCT is limited in the capability of separating the 
interfaces between the adhesive layer, the dental tissue and 
the resin; the adhesive layer cannot sometimes be told apart 
from air gaps. The issue is that interfaces between different 
materials are detected in OCT based on the difference 
between their indices of refraction [30], and the tooth 
adhesives present a quite low refractive index. Therefore, 
in order to better visualize such challenging interfaces, we 
proposed to employ materials that dope the adhesive to 
strengthen the backscattered light [121, 122]. In a recent 
study [123], the procedure of enhancing the contrast in 
the OCT image by applying an optimum concentration of 
zirconia to the adhesive layer was evaluated. This procedure 
allowed better visualization of the integrity of the adhesive 
fillings, by enhancing the interfaces between the adhesive 
and the tooth structures and between the adhesive and the 
composite resin.

Endodontic treatment. The quality of endodontic 

treatments and root canal fillings were investigated with 
en-f­ace TD-OCT technology [124–129]. It was possible to 
identify areas of apical micro-leakage between the filling 
material of the root canal space, the gutta-percha cones, 
and the root canal walls (Figures 7 and 8). For a better 
assessment of the quality of the endodontic treatment, 
the system equipped with a second channel, confocal, for 
guidance (as shown in Figure 1) was employed. This set-up 
provides both dual imaging and magnified view. The confocal 
image aids guidance and allows for focus adjustment 
in the OCT investigation. In order to obtain the images, 
sections up to a depth of 2 mm were scanned (Figure 9), 
thus quantifying the level at which defects appeared within 
the filling material or between the filling material and the 
gutta-percha material. During the examination, it has been 
evidenced that in some samples, defects were present in 
all sections to a full depth of 2 mm, while in others defects 
were observed in fewer layers. This observation allowed for 
a quantitative statistical analysis based on the number of 
sections in which defects were present.

In a different study [130], we employed OCT to investigate 
the fitting and the gap width between fiber posts, adhesive 
luting cement and root canal wall. The results obtained have 
proven the importance of assessing the interface quality of 
the fiber post, adhesive luting cement and root canal wall 
after each fiber post luting process.

Figure 6. (A), (B) and (C) 4×4 mm lateral size, 
slice from a depth of 500 µm measured in air. 
Coronal micro-leakage is detected between the 
restorative material and the tooth structure. Also, 
voids of different sizes are present inside the 
restorative material

Figure 7. 3D reconstruction of the apical microleakage area 
using a stack of 44 C-scan images acquired at a differential 
depth of 10 µm measured in air; a: gutta-percha cone, b: root 
canal sealer, c: root canal walls, d: microleakage area
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Figure 8. (A) and (B) OCT image of root canal apical microleakage; a: guta-percha cone, 
b: microleakage space, c: root canal sealer, d: root canal walls

OCT — Non-Invasive Investigations in Dentistry

Figure 9. Investigation of the same root canal filling, using the dual en-f­ace TD-OCT/CM. 
(A) Photograph of tooth in front of the scanning head; (B) a pair of confocal image (top) and 
en-f­ace OCT image (bottom). Reproduced with permission of the copyright owner [129]

Temporo-mandibular joint disc. In a preliminary study 
[131], we revealed the micro-structural characterization 
of the temporo-mandibular disc by using both  en-f­ace 
TD-OCT and SD-OCT. 8 human temporo-mandibular joint 
discs were harvested from dead subjects, having less 
than 40 years of age; the samples were then conserved 
in formalin. They presented normal morphology, with 
thicker posterior pars (2.6 mm on the average) and 
thinner intermedia pars (1 mm on the average). The OCT 
investigation of the healthy temporo-mandibular joint discs 
revealed their homogeneous microstructure, covered by a 
white superficial layer (Figure 10). The longer wavelength 
of the TD-OCT assembled offers a larger penetration 
depth (2.5 mm in air) than that achievable in the Sp-OCT 
system (1.5 mm), which is important for the analysis of 
the pars posterior, while the Sp-OCT proved to be much 
faster.

The longer wavelength of the TD-OCT allowed better 
identification of the homogenous microstructure of the 
thicker posterior pars on C-scan images; a continuous white 
superficial layer of a proteoglycan could also be visualized 
at 1300 nm. The detailed observation was allowed by the 
TD-OCT method, compatible with dynamic focus.

Orthodontics. The en-f­ace TD-OCT system shown 
in Figure 1 was also used in our studies to evaluate 
the connection between the bracket and the tooth 
structure [132]. Orthodontic attachments bonding strength 
cannot be measured with OCT; however, identifying and 
visualizing the voids in the composite can provide some 
indication on the quality of the bonding [133, 134]. OCT 
investigations provide information on the micro-leakage of 
the bracket’s bonding; in Figure 11 (A), several gaps can 
be seen along the bracket base. Also, it was possible to 
identify a lack of adhesive material on the side of the 
bracket (Figure 11 (B)). Although this work was restricted 
so far to ex vivo investigations [135, 136], the tooth-bracket 
interfaces could also be imaged in vivo by assembling 
special hand held probes as described in [137].

Implantology. Bone grafting is a commonly performed 
surgical procedure for bone regeneration in a variety 
of orthopaedic and maxillofacial procedures. There are 
several aspects that require attention when implementing 
this type of procedures, such as consideration of materials 
used in bone regeneration, quality control methods, 
adjustment of the initial bone regenerative scaffold, 
monitoring of their osteoconduction and osteo-integration 
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period, and biomedical evaluation of the new regenerated 
bone. It would be valuable to extend the OCT evaluation 
of the bone grafting material/bone interface to a wide area 
of hard tissue augmentation procedures. The quality of 
bone grafting was evaluated by using TD-OCT (Figure 12) 
and validated by using microCT (Figure 13). Based on 
these studies, it becomes easier to extend OCT to in vivo 
evaluations to provide qualitative and quantitative data on 
the bone augmentation procedures [138–140].

The quality of the implant insertion can be investigated by 
using the analysis of the interface between the implant and 
the bone. We have initiated two studies on the numerical 
simulation and tensional stamps. Both have demonstrated 
that en-f­ace TD-OCT is able to evaluate the morphology 
of interfaces between the implant and the bone [141, 142]. 

Both C-scan and B-scan OCT images were collected. 
3D analysis was made possible by acquiring a number 
of 30 to 100 C-scans that were used post-acquisition 
to explore the volume of the tissue around these 
interfaces. The authors chose to evaluate the implant-
supported restorations on two implants connected 
with conjunction bars and the implant supported 
restorations on four implants connected with a bar.

For the model development we used the ANSYS 
Computer-Aided Engineering (CAE) software. 
The ANSYS CAE software program was used in 
conjunction with a 3D Computer-Aided Design 
(CAD) to simulate the behavior of mechanical parts 
under thermal/structural loading conditions. ANSYS 
automated Finite Element Analysis (FEA) technologies 
from ANSYS, Inc. (USA) were used to generate the 
results listed in this report. Numerical simulation 
investigations generated specific charts that allowed 
for the quantitative evaluation of the tensions around 
the implants and in the bone structure. The micro 
measurement method was used to validate the results 
obtained using the numerical simulations. It was 
demonstrated that the four implants configuration with 
a connecting bar is better than the solution of two 
implants with a connecting bar because the tensions 
in the implant bone interfaces are lower. The most 

important feature is represented by the intimate contact 
between the implant and the bone. To investigate such 
aspects, it is again essential to employ a non-invasive 
method to predict the stability of the inserted implants. En-
f­ace TD-OCT images from different interfaces between 
mandible bone and the implants are shown in Figure 14. 
Using occlusal scanning, numerous spaces between 
the implant and the bone were found. These can be 
the source of deficient biomechanical behaviour of the 
implant-supported restoration. The classical investigation 
methods like nuclear magnetic resonance and computed 
tomography are invasive and they exhibit inferior 
resolution. Therefore these methods cannot ensure a good 
prognostic of the dental treatment, while OCT is capable to 
achieve better overall resolutions while being non-invasive.

Figure 11. (A) C-scan image of an adhesive bracket bonded on a 
vestibular maxillary premolar area. Part a: ceramic bracket; part b: gap 
trapped inside the adhesive resin between the bracket and the tooth; 
part c: adhesive resin layer; and part d: buccal area of the maxillary 
premolar. Depth measured in air: 60 µm. Lateral size: 4.4 mm. 
(B) Adhesive bracket bonded on a vestibular maxillary premolar area. 
Part a: ceramic bracket; part b: lack of adhesive layer material in a 
large area between the bracket and the tooth; part c: adhesive resin 
layer; and part d: the vestibular area of the maxillary premolar. Depth 
from top, 160 µm measured in air. Lateral size: 4.4 mm. Reproduced 
with permission of the copyright owner [132, 135]

Silvana Canjau, Carmen Todea, Meda Lavinia Negrutiu, Cosmin Sinescu, ..., Adrian Gh. Podoleanu

Figure 10. OCT investigation of pars posterior of the temporo-mandibular joint disc: 
(A) investigated area (between the black lines); (B) C-scan en-f­ace OCT image (lateral image 
size 4×4 mm) at a depth of 800 microns from the top measured in air: due to the tilt of the disc 
surface, black is air and below white border is the tissue; the white superficial layer covers a disc 
tissue with homogeneous microstructure; (C) B-scan SD-OCT image: the white superficial layer 
is identified better than the underlying disc tissues — lateral image size 4 mm (horizontal), axial 
size 1 mm measured in air (vertical). Reproduced with permission of the copyright owner [131]
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Figure 12. 3D reconstruction of TD-OCT investigated sample — 3 months from the augmentation with bone substitutes; a: rat 
bone, b: bone substitute. (A) Good delimitation between the bone and the bone substitute; (B) the opening of the gap affects the 
interface allowing to form a reactive space between the bone and the bone substitute; (C) at deeper level — no delimitation at the 
interface between the bone and the bone substitute. Reproduced with permission of the copyright owner [138]

OCT — Non-Invasive Investigations in Dentistry

Figure 13. MicroCT at three months after bone augmentation 
procedure; a: the remaining regenerative materials (white color) can 
be separated from b the normal bone (dark blue) and c the new bone 
(light blue). Reproduced with permission of the copyright owner [139]

Figure 14. C-scan OCT images (two-dimensional en-f­ace) showing 
details from the interface between implant 4 and mandible bone (A) 
and (B) show major defects in the distal part of the implant. Slide 19 
(A), 37 (B) from 61 slices acquired from a 2 mm depth measured in air, 
lateral size: 18 degree, distance between slices 33 microns measured 
in air. Reproduced with permission of the copyright owner [141]

Prosthodontics. Sequential and rapid switching 
between the en-f­ace regime and the cross-section 
regime, specific for the en-f­ace TD-OCT technology 
represents a significant advantage in the non-
invasive examination of dental prostheses [120, 
143–158]. Several types of such prostheses were 
investigated, including metal-ceramic fixed partial 
prostheses, metal-ceramic crowns, metal-polymer 
fixed partial prostheses, metal-polymer crowns, 
polymer and all-ceramic fixed partial prostheses, 
and complete dentures. The main goal has been to 
detect the presence or absence of material defects 
and micro-leakages at the prosthetic interfaces.

In several of the prostheses investigated by our 
group, defects that may cause their fracture were 
identified. The areas depicted in the OCT images 
present several small canals in the base that can 
be colonized in time with bacteria. Such areas can 
also cause the start for esthetic and functional 
failure of the prosthetic treatment. The defects 
are usually located inside the material and cannot 
be depicted visually or by any other conventional 
imagistic method. A series of these defects are 
illustrated in Figures 15 and 16, obtained using the 
en-f­ace TD-OCT system.

In yet another study, we have analyzed the potential 
of en-f­ace TD-OCT for the investigation of all-ceramic 
veneers immediately after the bonding process. 
This evaluation can be useful for establishing the 
prognostic of the prosthetic treatment. 32 Empress 
veneers (Ivoclar Vivadent, Lichtenstein) were 
investigated using  en-f­ace TD-OCT. The scanning 
procedure was performed vestibular, oral, mesial 
and distal for each sample [159]. The investigation 
revealed poor marginal adaptation for 18 out of 32 
samples. The marginal adaptation problems were 
identified especially in the proximal and oral areas 
(Figure 17).
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Figure 15. C-scan OCT image matching the depth of the defect 
at b approx 0.2 mm measured in air from the top, lateral size 9.5 
by 9.5 mm. The image shows the interface between pillar crown 
a and pontic c in a metal ceramic fixed partial prosthesis. The 
defects inside the ceramic layers can be observed — part b. 
Reproduced with permission of the copyright owner [156]

Figure 16. C-scan OCT images from esthetic fixed partial prostheses. (A) and (B) refer to the same polymer prosthesis; 
images are acquired from different depths and with different lateral size. (A) 140 µm from the top measured in air, with 
a void well defined inside the material; (C) 4.4 mm lateral size and deeper than in (A) by 100 µm. (C) All ceramic crown 
pressed ceramic technology. Part a: crown and part b: defect inside the ceramic layers at approximately 600 µm depth 
measured in air. Reproduced with permission of the copyright owner [120, 158]

Figure 17. a: veneer, b: tooth, c: poor marginal 
adaptation on proximal area — Empress veneer: 
(A) C-scan, slice 23 from 94, 8 degree in air; 
(B) B-scan allowing to view the issues of the 
marginal adaptation. Reproduced with permission 
of the copyright owner [159]

Handheld scanning probes for OCT. Several variants 
of handheld scanning probes for OCT were developed in 
our groups, in an effort to make them as light, simple and 
low-cost as possible. We have shown that probes can be 
constructed almost entirely from off-the-shelf parts and 
ergonomic designs, like that shown in Figure 18 [137]. This 
has been used for an ex vivo study of metalo-ceramic dental 
prosthesis [137].

The handheld probes devised so far employ a one-
dimensional galvanometer scanner (1D GS), that provide 
distortion-free OCT images when driven by triangular 
signals [160, 161]. In contrast, Micro-electro-nechanical 
systems (MEMS)-based handheld probes are sinusoidally 
driven, using resonant oscillatory mirrors; therefore 
they require post-processing of OCT images in order to 
remove distortions [162]. Progress is under way to develop 
two-dimensional scanning heads to provide volumetric 
reconstructions of the samples investigated [163].

The 1D GS-based handheld probes developed in [137] 
reached a mass of 0.35 kg, in comparison to MEMS-based 
probes, of 0.5 kg [162] and to commercially available probes 
of 1.5 kg (Bioptigen Envisu, USA) or 2.2 kg (Optovue iVue, 
USA).

Silvana Canjau, Carmen Todea, Meda Lavinia Negrutiu, Cosmin Sinescu, ..., Adrian Gh. Podoleanu
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Figure 18. Handheld scanning probe — 
ergonomic variant [137]

A handheld probe developed in our group has already 
been applied to an in vivo study in an ENT Department in 
a clinical environment [164]. The development of handheld 
probes is part of our effort to extend ex vivo to in vivo clinical 
investigations.

Conclusions. The paper presents the experience 
of our multidisciplinary team in acquiring OCT images 
using several own assembled OCT systems. Using such 
systems, we investigated and assessed non-destructively 
hard dental structures, dental materials, dental restorations 
and the temporal-mandibular joint disc. The studies 
demonstrate the viability of OCT as a useful tool in dental 
medicine practice, as well as in research. Being completely 
non-invasive, OCT can be extended to soft tissue. It is also 
expected that technological progress in the most important 
area for OCT applications at the moment, eye imaging, 
will spur collateral advancement of OCT development in 
dentistry. For instance, decrease in the cost of handheld 
devices used in imaging the anterior chamber of the eye, 
will impact the cost of similar systems that can be applied 
to dentistry with a minimum of alterations. Both TD and SD 
implementations prove the unique capabilities of OCT. For 
handheld scanning devices it is expected that the swept 
source principle (as one of the SD possibilities) will prevail, 
due to its high speed that allows reduction of distorting 
effects caused by involuntary movements of the hand and 
of the patient. However, for high transversal resolution 
investigations, especially in more research oriented studies, 
it is expected that en-f­ace TD-OCT will continue to coexist 
with SD-OCT methods, offering additionally a low cost quick 
provision of en-f­ace view and compatibility with dynamic 
focus. Dynamic focus, that is the simultaneous adjustment of 
focus and coherence gate in depth is incompatible with SD-
OCT methods and require repetitions of acquisitions under 
different focus in order to improve the transversal resolution, 
or more complex heads with division of the optical path in 
the object arm along different focus adjustments. In this 

OCT — Non-Invasive Investigations in Dentistry

respect, en-f­ace TD-OCT provides a lower cost alternative 
for high transversal resolution of static samples.

We have shown that complementary studies are 
possible by combining OCT with more traditional methods, 
such as confocal microscopy and microCT. Combination of 
principles is expected to evolve in the near future due to 
their limitations when considered separately.

TD-OCT and SD-OCT systems were used separately in 
our studies, for different applications, as presented. However, 
research has shown improved performance achievable by 
combining principles of TD and SD interferometry. For the 
moment, implementation of combination of such principles 
is still expensive, but once implemented, the architectures 
obtained show promise in terms of simultaneous en-f­ace 
imaging or in terms of extending the axial range of SD 
methods. They may find niche applications, first in handheld 
scanning devices and second in long axial catheters 
to be used on the nerve canals. Dentistry, as well as 
ophthalmology, will continue to benefit from the continuous 
advancement in the OCT hardware and customization of 
different principles to specific applications.
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