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Degenerative processes of the intervertebral disc are shown to represent a diversity of molecular, cellular, structural, and functional 
alterations, the main clinical manifestation of which is pain syndrome. On this basis, therapy of intervertebral disc degeneration is directed 
to pain elimination and does not take into consideration real causes of degenerative process development, does not study the feasibility 
of regenerating the structure and biomechanical function of the disc. A new approach to the study of molecular and cellular mechanisms 
of intervertebral disc degeneration, examination of the disc degenerative process pathogenesis from the standpoint of its ontogenetic 
development allows discovery of new links of pathogenesis and suggestion of new promising ways of therapeutic intervention. The 
developed models of intervertebral disc degeneration, which make it possible to explore comprehensively morphogenesis and associated 
intracellular signal pathways, as well as early postnatal alterations in the discs, are considered here. Current strategies of biological therapy 
of degenerative processes, which are directed to the activation of regenerative potentials in the disc and in its self-renewal, are presented. 
One of the perspective methods of biological therapy of this disease is application of autologous intervertebral disc cells cultured in vitro with 
their subsequent transplantation, which can potentially compensate for cell deficiency and, consequently, disc matrix as well.
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Embryogenesis and Regeneration of the Intervertebral Disc

Currently, degenerative processes of the 
intervertebral disc (IVD) continue to remain a burning 
problem of modern medicine. The most common clinical 
manifestations of the IVD degenerative processes 
are pain in the back, which is often associated with 
early disability [1, 2]. The pain syndrome in the back is 
experienced by more than 85% of people over the age 
of 35 [3, 4]. IVD is a partially movable joint connecting 
vertebral bodies, and providing a uniform distribution of 
the load and mobility of the entire spinal column. The 
causes of IVD degenerative process development have 
not been completely studied but they are certain to be 
linked with the processes of human body aging [5]. IVD 
degeneration is a complex cascade of reactions, which 
evolves primarily in the IVD cells and progressing for 
decades manifests itself in the form of structural and 
functional disorders [6, 7].

Present-day methods of treating degenerative IVD 
processes are directed only to the elimination of the pain 
syndrome and include, as a rule, administration of anti-
inflammatory drugs and physiotherapy. In those cases 
when operative treatment is indicated, spondylosyndesis 
with different fixing systems is a golden standard [8]. 
However, abolition of the pain syndrome only without 
restoration of the IVD mechanics or structure can 
result in recurrence of the pain syndrome and, as a 
consequence, to the progression of IVD degeneration 
[9, 10]. Recently, arthroplasty (replacement by an 
artificial disc) becomes a common surgical method 
of treating degenerative IVD processes aimed at 
restoration of spine mobility. However, these types of 
implants have a number of disadvantages, which limit 
their wide application: they are not able to reproduce 
the mechanical function of the native IVD, subjected 
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to a fast deterioration and fractures [10]. Therefore, 
the most perspective method of treating degenerative 
IVD processes is biological therapy based on studying 
molecular mechanisms of IVD degeneration.

Degenerative IVD processes are known to be not 
typical for adolescents, nevertheless, microstructural 
alterations in IVD are found already in the first years 
of the infant life [11, 12]. Embryology considers IVD 
as a unique structure originating from the cells of the 
notochord and somite stalks. It is these cell populations 
that will form subsequently IVD tissue with its unique 
microstructural, mechanical, and functional features. And 
we will consider molecular and cellular mechanisms of 
degenerative IVD processes and perspective methods 
of biological therapy of the degenerating IVD from the 
standpoint of embryology.

The structure and metabolism  
of the intervertebral disc

IVD is a highly specialized formation consisting of 
three main structural components: an annulus fibrosus, 
nucleus pulposus, and endplates [13]. Annulus fibrosus 
bounds the nucleus pulposus, a gel-like core, consisting 
of randomly arranged collagenic fibers and radially 
located elastic fibers immersed in a highly hydrated 
aggrecan-containing gel. The annulus fibrosus is 
composed of about 25 concentric rings or lamellae 
generated by the located in parallel collagen fibrils 
surrounded by elastic fibers [14, 15]. The highly hydrated 
aggrecan in the nucleus pulposus maintains osmotic 
pressure providing the formation of IVD properties.

The nucleus pulposus and annulus fibrosus have 
different cellular composition. The cells of the annulus 
fibrosus in the external part of the fibroblastoid structure 
are situated in parallel with the collagenic fibers. In the 
inner part, they are more oval, chondrocyte-like. The 
cells of the nucleus pulposus have a chondrocyte-like 
structure and are located sporadically, about 5,000 
in 1 mm3, are embedded in the matrix and sometimes 
are encapsulated. Some IVD cells both in the nucleus 
pulposus and annulus fibrosus have an elongated 
shape and can reach 30 μm. They are supposed to 
fulfill a sensory, communicative role in IVD [16, 17]. Two 
endplates composed of the hyaline cartilage close the 
disc axially and adjoin the neighboring vertebrae. Their 
thickness does not exceed 1 mm [18, 19].

IVD of a healthy adult practically lacks blood vessels 
and nerve fibers. A few nervous fibers are detected only 
in the outer lamellae of the annulus fibrosus, part of 
them are the ends of proprioceptors [20]. Already in the 
first decades of life the disc loses the greater part of its 
blood supply causing deficiency of nutrients [21, 22]. The 
secondary relative to the loss of significant part of the 
blood supply is calcification of the endplate leading to the 
reduced diffusion of the plastic substances [23]. Without 
the necessary nutrients cells die, synthesis of the 
energy substrates, proteins of intercellular substance, 

diminishes [24]. An adult has half as many IVD cells as a 
child [25, 26].

Degenerative alterations of the nucleus pulposus 
are characterized by a progressing decrease of the IVD 
height. The boundary between the nucleus pulposus 
and annulus fibrosus becomes more distinct. A brown 
pigmentation in the IVD tissue intensifies, the tissue 
becomes more fragile. Degenerative changes in the 
annulus fibrosus display themselves by disorganization 
of the regular interlace of the collagen lamellae and 
elastin, replacement of the gel-like structure by the 
fibrocartilaginous tissue. In the majority of people the 
course of aging (degeneration) is slow, gradual, however 
in some situations it may essentially accelerate, causing 
the occurrence of the pain syndrome [27, 28]. 

IVD matrix destruction is performed by specific 
enzymes. They include aggrecanases, various kinds of 
matrix metalloproteinases (MMP) and other degenerative 
enzymes. For example, MMP-3, or stromelysin, destroys 
types III, IX and X collagens, proteoglycans, fibronectin, 
MMP-2, or gelatinase, causes degradation of type IV 
collagen. Some other degenerative enzymes are united 
in the ADAMTS family [29, 30].

Pathogenesis of intervertebral disc degeneration

Prominent changes of the extracellular IVD matrix take 
place with age [31, 32]. Reduction of aggrecan synthesis 
in the nucleus pulposus results in its dehydration and 
subsequent impairment of its mechanical function 
[33, 34]. Dehydrated nucleus pulposus is not able to 
distribute uniformly mechanical pressure over all IVD 
structures. Due to this reason, the annulus fibrosus 
experiences an elevated load, which cannot but have 
an effect on its structure in the form of local damages 
[35–38]. Annulus fibrosus lesions lead to the formation 
of IVD protrusions and hernias, causing acute radicular 
pain syndrome. Besides, the damaged annulus fibrosus 
reduces markedly the IVD height, which also entails 
changes of the biochemical parameters of the spine and 
development of back pain [39].

Several interconnected factors are known to 
participate in the initiation and progression of 
degenerative IVD processes: nonuniform distribution 
of mechanical load over IVD structures, decreased 
diffusion of nutrients through the endplate, and genetic 
factors [40]. Age changes of the extracellular IVD 
substance are associated with alterations in metabolism 
and cellular population apoptosis [41]. Cellular 
microenvironment becomes aggressive relative to the 
IVD structures and is characterized by the increased 
synthesis of proinflammatory cytokines, mediators and 
catabolic enzymes [42]. The reason of inflammation 
activation in IVD is partly linked with the reduction of 
nutrient diffusion through the endplates, which are 
subjected to marked thinning and calcification [42]. 
Mechanical load also play an important role in the 
progression of IVD degeneration. Thus, Walsh [43] 
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showed that in case of inadequate mechanical action 
on IVD tissue, the number of cells and intercellular 
substance decrease substantially. On the other hand, 
insignificant mechanical load on IVD stimulates nutrient 
diffusion through the endplate and protein synthesis of 
extracellular matrix.

The role of genetic factors in the development 
of degenerative IVD processes does not raise any 
doubts [44]. Examination of twins proves the presence 
of genetic predisposition to the development of IVD 
degeneration [45]. 

Models of intervertebral disc degeneration 

Creation of the IVD degeneration models in order 
to study the links of pathogenesis and to develop 
methods of therapy was rather a difficult problem. 
It was connected with time characteristics (several 
years are needed to gain an understanding of a real 
picture of the degenerating IVD), and with the ways 
of initiation of IVD degeneration in experiment [46]. 
However, low availability of IVD tissue at the initial 
stages of degeneration and almost complete absence 
of unaltered IVD for comparison in vitro means that 
such models of IVD degeneration, despite their 
drawbacks, are necessary for the study of signal 
pathways of the degenerating IVD. IVD of many 
animals have anatomical and biological properties 
similar to human making them suitable for creating 
models of degeneration [47]. Trauma of the annulus 
fibrosus, nucleus pulposus, mechanical overload 
as well as enzymatic treatment of nucleus pulposus 
glycosaminoglycan are distinguished among the 
methods of degenerative IVD process initiation 
in models [48–51]. Models with spontaneous IVD 
degeneration have also been developed [52, 53].

Development of intervertebral discs: 
embryogenesis and postnatal period

Axial string from the cells having initially thickness 
equal only to one cell called a notochord is present in 
embryos of all chordates and gives them the pertinent 
name. In lancelets and tunicates the notochord remains 
a single axial skeleton for the whole life of the organism. 
In vertebrates, the notochord disappears at the early 
stage of embryonic development and is replaced by a 
cartilaginous or bony spinal column [54]. Only several 
weeks after conception an embryo (12 mm long from 
the cephalic pole to the sacrum) has a spinal column 
with distinct vertebrae and IVD. They are pierced by a 
notochord, which is still preserved over the full length of 
the spine [55]. Later on, the notochord is displaced from 
primordial vertebral bodies by the growing cartilaginous 
cells and remains only in the form of drop-like inclusions 
in the center of IVD designating the location of what later 
will become a nucleus pulposus. The outer zone will 
subsequently change into the annulus fibrosus [56, 57]. 

Even at an early stage of development it already contains 
longitudinal fibers extending to the cartilaginous layer of 
the primordial vertebral body. They are precursors of 
Sharpey’s fibers in the transition zone between the disc 
and the vertebra. There are many fibers and few cells 
in the outer zone. It smoothly goes over to the loose 
inner zone around the notochord with a less number 
of structures [57]. Nucleus pulposus develops from the 
parachordal inner zone and somewhat eccentrically 
located remnant of the notochord. While the center of 
the vertebra is being gradually ossified, a cartilaginous 
plate is formed at the vertebral body-disc interface. Later 
on a bony edge of the vertebral body develops from the 
cartilaginous edge of this plate [57]. 

All structures of the disc involved in the biochemical 
function of the spine are already present at birth. During 
embryonic development and at a very young age a 
growing IVD still has its own system of blood supply. 
These blood vessels evolve from the vascular network 
situated immediately outwards from the vertebral 
column especially in the intervertebral foramens, and 
directly enter the annulus fibrosus radially piercing its 
layers (lamellas) and forming interlamellar capillary 
plexuses. Two types of vessels, peripheral and central 
axial, supply blood to IVD. They never go either to the 
inner layers or nucleus pulposus [58, 59]. Thus, from 
the very beginning of its development, the central 
part of IVD is nourished only by diffusion. Formation 
of vertebral bodies and IVD is finally completed at 
preadult age. Vertebral bodies grow from the zones of 
proliferation in the cartilaginous endplates. In the region 
of the endplate facing the bone marrow there is a typical 
zone of cartilage growth and decay, which is preserved 
till about 20 years of age [59].

Inside the cartilaginous ring at the edge of the 
endplate regions of ossification appear, they coalesce by 
12 years of age to form a bony ring, which then merges 
with the vertebral body. Annulus fibrosus lamellas are 
fixed to this bony marginal ring by Sharpey’s fibers. 
The annulus fibrosus and nucleus pulposus enlarge in 
size by interstitial appositional growth. In the outer disc 
layers dense lamellar bundles are generated, which 
go between the bodies of two vertebrae in the form of 
twisted spirals [60]. The farther from the IVD periphery 
the lamellas of the annulus fibrosus are located, the 
weaker they are and less tightly grouped. Even in a fully 
mature IVD, its center, the nucleus pulposus, consists 
mainly of a structureless matrix [60]. Connective tissue 
cells located in the annulus fibrosus and producing 
fibers and matrix are established to be supplied with 
blood only till the age of about 2 years [61]. Then the 
supplying vessels undergo a regress, and by the age of 
4 the annulus fibrosus appears to be avascular. It would 
seem vice versa, a human IVD, being so rich in cells and 
fibers, needs a plentiful blood supply due to a continuous 
synthesis and decay of macromolecules going on in it. 
IVD blood supply starts to regress at the age of about 
a year, when a baby begins to walk upright. There may 
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be supposed the association between IVD avascularity 
and mechanical load, which it constantly endures during 
standing and walking.

Arteries and veins of the vertebrae lie in the interstices 
left by a robust trabecular bone system, and therefore 
are not exposed to the axial mechanical load. Physically 
loose homogeneous tissue of the IVD lower part, on 
the contrary, resembles a liquid [62]. Thus, depending 
on the body position pressure inside the IVD can be 
high enough to cause a prolonged compression of the 
intradiscal vessels resulting in metabolism disturbance 
of the IVD tissue. Insufficient delivery of nutrients in 
IVD has a detrimental effect on the quantity and quality 
of intradiscal connective tissue. In subsequent years, 
the annulus fibrosus and nucleus pulposus enlarge 
in volume due to appositional growth of interstitium 
but their increase lags behind the growth of vertebral 
bodies. So, the ratio of IVD height to the vertebral height 
gradually increases from 1:1 at birth to 3:1–5:1 by the 
completion of the axial growth phase.

In a qualitative sense, IVDs of adolescents are also 
found to be involutionally changed, which speaks of 
preliminary aging, these changes are mainly associated 
with a rapid fall of the water content level. Alterations of 
the consistency and color of the IVD tissue in the first 
years of life is easy to see by the naked eye on fresh 
sections of autopsy specimens. In newborns and infants, 
IVD surface looks hyaloid, gelatinous and semi-liquid. 
For example, even in a 2-year child this semi-liquid 
central part can be removed with a cotton tampon, while 
it is already impossible to do in adults [63]. Even after 
the completion of the axial growth, IVD is subjected to 
further regressive changes, which are noticeable on 
its appearance. At a mature age, the tissue in the IVD 
central part is not already homogeneous, gelatinous and 
looks dry and fibrous. If a motor segment is immobilized 
by spondylosis spurs, IVD connective tissue may 
undergo reorganization so that blood vessels begin to 
grow into IVD again [63].

Cellular signal pathways  
in intervertebral disc embryogenesis 

Development of IVD in ontogenesis wholly depends 
on the coordinated work of molecular signals originating 
in the notochord and nervous tube plate [64]. Shh 
protein (sonic hedgehog) is a signaling molecule, which 
performs an important function of tissue morphogenesis 
regulation, presenting information about location and 
degree of cell differentiation [65, 66]. Somite stalks 
develop under minimal effect of Shh and Wnt signaling 
pathways, whereas a sclerotome tissue develops only 
under the activating effect of the Shh pathway [67]. A 
specific feature of the Shh intracellular cascade work 
is a synergism with Noggin-cascade, which is a direct 
antagonist of the BMP pathway in the induction of 
sclerotome growth [67]. Noggin molecules are at first 
actively expressed by the notochord cells blocking BMP 

signaling from the developing vertebral bodies till the 
formation of the annulus fibrosus [68].

Genes of the Pax family encode transcription factors 
regulating the processes of proliferation, differentiation, 
apoptosis and migration of polypotent cells in 
embryogenesis. It is the expression of these genes 
that plays a primary role in differentiation of cellular 
populations, from which later IVD and vertebral bodies 
will originate [69–71]. It is proved that exactly the Pax1 
and Pax9 genes participate in the IVD development. 
When these genes are deleted, IVD and vertebral 
bodies do not develop, and a cartilaginous core of the 
irregular shape is formed at their place [72]. Expression 
of Pax1 gene in the sclerotome tissue is mediated by the 
action of Shh and Noggin signaling pathways from the 
notochord cells [73, 74]. Till the completion of IVD and 
vertebral body formation, almost all cellular population 
of the sclerotome expresses Pax1 gene. After IVD 
formation, Pax1 expression occurs only in the tissue 
of IVD primordium (precursor of the annulus fibrosus) 
surrounding the notochord. Evidence exists that Pax1 
gene is able to influence indirectly the notochord 
development via the sclerotome tissue: in Pax1 mutant 
cells the notochord is essentially enlarged in size due 
to a marked cellular proliferation [74]. Thus, Pax1 gene 
influences the notochord development by activating 
cellular proliferation till the latter will turn to the nucleus 
pulposus.

Also important is a family of genes participating 
in the development of the spinal column structures 
represented by Sox genes [75, 76]. Sox5, Sox6, 
and Sox9 genes are of special significance for IVD 
tissue development. Sox5 and Sox6 express both in 
the cells of sclerotome and the notochord [77]. In the 
experiment on mice deprived of Sox5 and Sox6 genes, 
formation of notochordal membrane was impaired. 
It was connected with the fact that these genes are 
responsible for the synthesis of intercellular substance 
components (aggrecan and type II collagen) [77]. 
Absence of notochordal membrane leads to apoptosis 
of the notochordal cells and disturbance of further 
development of all IVD components. Gene Sox9 
expresses initially in the notochord and sclerotome, 
participating mainly in the synthesis of type II collagen 
[78]. In the cells with deleted Sox9 gene, an adequate 
notochord is initially formed, but later on it degrades 
due to the absence of notochordal membrane 
matrix. Underdevelopment of notochords and, as a 
consequence, a mediated cellular signaling affects 
detrimentally further formation of the sclerotome [79].

A signaling TGF-β pathway actively participates in the 
development of IVD and vertebral bodies as well. TGF-β 
cascade regulates cellular proliferation, differentiation and 
synthesis of IVD intercellular substance components [80]. 
There are several tissue-specific types of TGF-β. TGF-β3 
is actively synthesized in the perichordal membrane 
and promotes the development of the annulus fibrosus 
and vertebral bodies. Blockage of the TGF-β2 receptors 
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responsible for the synthesis of type II collagen results 
in incomplete formation of the nucleus pulposus, the 
outer part of the annulus fibrosus and also to partial 
IVD mineralization. This confirms the fact that TGF-β2 
receptors took part in the differentiation of IVD tissue and 
vertebral bodies forming an adequate spine [80].

Current methods of biological therapy  
of degenerative intervertebral discs processes 

To activate a regenerative potential of IVD, various 
approaches are used: introduction of therapeutic agents, 
proteins-activators, different types of cells or cellular 
populations influencing the biosynthesis and degradation 
of diverse components of extracellular matrix as well as 
methods of gene engineering.

Introduction of biologically active substances 
in the degenerating intervertebral disc. Single or 
repeated direct injections of TGF-β into the tissue of 
the human degenerating intervertebral disc in vitro 
promoted the increase of proteoglycan synthesis and 
reduction of tissue resorption due to the decrease of 
MMP-2 secretion; a periodic proliferative effect was also 
observed [81]. Similarly, IGF-1 facilitates increase of 
proteoglycan synthesis and slowdown of IVD resorption 
decreasing the level of active MMP-2 [82]. IGF-1 elevates 
also the viability of the cells acting antiapoptotically [83]. 
An interesting fact is that the level of IGF-1 reduces with 
age. At present, there have been published the results 
of the investigation, in which IVD degeneration of the 
lumbar part of spinal column was modeled in rabbits. 
Direct injections of osteogenic protein-1 (OP-1), a growth 
factor belonging to TGF-β family, contributed to the 
increase of proteoglycan synthesis and restoration of the 
IVD height. The obtained result was stable for 8 weeks 
after injections [83]. After direct injections of OP-1 to the 
rats, in which IVD degeneration was modeled, inhibition 
of pain-determined behavior was observed [84].

Methods of gene engineering therapy for IVD 
regeneration. Delivery of biologically active substances 
to the degenerating IVD is possible using genetically 
modified IVD cells expressing the necessary gene 
product. Owing to the advances in molecular genetics it 
is possible to introduce the necessary genetic element 
practically into any cell. Isolated cells from the IVD of a 
bull or rat were transformed with the help of a retroviral 
vector containing gene-encoding antagonist of IL-1 
receptor (IL-1RA) [85, 86]. These gene constructs 
were used for in vivo injections in the experiments 
on rabbits with modeled IVD degeneration, as well 
as transfection of human IVD cells in vitro [86]. These 
experiments showed that retrovirus-based vector is 
capable to transfect effectively the cells of various kinds 
of mammals. Later, adenovirus-associated vector (AVV) 
was developed to overcome the danger of immune 
reaction to the retroviral vector [87]. The authors [50] 
have demonstrated that AAV effectively transfects IVD 
cells of a man and rabbit in vivo generating humoral 

rather than a cellular immune response, and leads to an 
active transgenic expression.

Despite a sufficient number of investigations proving 
the flexibility of the direct delivery of genes into IVD 
cells using virus-based vectors, the question about 
a gene that is to be delivered is still open. Among the 
candidates are anabolic factors TGF-β1, LMP-1, Sox9, 
and anticatabolic factor MMPI-1. The first researches 
on exogenous gene delivery in vivo were performed 
by Nishida et al. [88] using adenoviral vector carrying 
TGF-β1 in rabbits. The authors established a significant 
increase of TGF-β1 expression as well as proteoglycan 
in IVD. When LMP-1 was injected in vivo into the disc 
tissue of rabbits, expression increase of anabolic 
cytokines BMP-2, BMP-7 and aggrecan was observed, 
which confirms the expediency of using this factor as 
a therapeutic means [89]. Sox9 does not influence 
the synthesis of proteoglycan but at the same time it 
increases synthesis of type II collagen if transferred to 
the cells of the human degenerating IVD. Transfection of 
Sox9 by the adenoviral vector to the degenerating disc 
of a rabbit provides preservation of the structure inherent 
to the unaffected disc, whereas typical degenerative 
changes in IVD were observed in the control group of 
animals [89, 90].

Thus, increase of the synthesis not only of 
proteoglycan but type II collagen as well can prevent 
degenerative IVD changes. It may also be supposed 
that a combined application of various factors will be 
much more effective and physiological. Simultaneous 
application of TGF-β1, IGF-1, and BMP-2 is known 
to have a synergetic effect on the synthesis of useful 
intercellular proteins. An alternative to the anabolic 
factors may be the application of anticatabolic factors, 
which will enable deceleration of the degradation 
process without the need of synthesis increase in IVD 
cells. Delivery of MMPI-1 into the human degenerating 
disc using adenoviral vector contributed to the growth of 
proteoglycan content in the culture [90].

Application of stem cells in the therapy of 
IVD degeneration. Achievements in the field of 
mesenchymal stem cell (MSC) applications make 
it possible to consider them as a source of cells for 
gene therapy with subsequent implantation. MSCs are 
uncommitted multipotent stem cells, which are found 
in different tissues. They are characterized by a high 
plasticity and ability to multilinear differentiation. They 
are available and easy to be manipulated. Several 
vector systems are known to be introduced into MSC, 
which demonstrated a high activity of expression [91, 
92]. However, transformation is not the only problem that 
is to be solved. MSC are not differentiated, they should 
be differentiated into chondrocyte-like cells before 
implantation. For this purpose, growth factors of BMP 
family were used [93]. A more specific differentiation 
factor from the Sox family is being studied. A family of 
Brachyury transcription factors promotes the necessary 
cell adhesion [94–97]. Nevertheless, it has recently been 
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established that it is enough to cultivate MSC with IVD 
cells for discoid phenotype induction [98, 99]. 

Cultivation in 3D system also promotes formation 
of a chondrocyte-like phenotype. When MSC system 
incorporated in the collagen gel was implanted into the 
degenerating IVD of rabbits, preservation of the nucleus 
pulposus and annulus fibrosus structure, prevention 
of proteoglycan synthesis reduction, increase of IVD 
height were noted [100]. Implanted cells survive and 
express genetic markers of the nucleus pulposus and 
annulus fibrosus. Similar results were obtained injecting 
a MSC suspension into rabbit IVDs, and suspension 
incorporated into the gel into IVD of the rat coccygeal 
part [101–103]. 

Application of MSC gave a new impetus to the 
development of autotransplantation methods in 
degenerative processes in IVD. But there are still a 
lot of questions to be answered, for example, whether 
chondrocytes originated from MSC are identical or similar 
to the cells of the nucleus pulposus. Though the results 
of the last investigations show the affinity of the cells, 
nobody knows how long they will preserve the phenotype 
in such microenvironment in the degenerating IVD, and 
whether new cells will also be subjected to degeneration 
or malignization. Unstudied is the question about 
biomechanical properties of a newly synthesized matrix. 

Conclusion

Despite significant advances in the study of 
molecular and cellular mechanisms of intervertebral disc 
degenerative processes, the etiology of this disease 
remains insufficiently explored. Therapeutic methods 
currently employed in clinical practice are not able to 
restore the structure and biomechanical function of 
intervertebral discs. It is important to remember that the 
development of intervertebral discs in embryogenesis 
is a complex process of coalescence of several cellular 
populations by a variety of molecular interactions. 
The structures of intervertebral discs generated in 
ontogenesis must function in a strict synergism, 
especially when exposed to unfavorable endogenous 
and exogenous factors. Changes of intervertebral 
discs in the postnatal period (angiogenesis regression, 
decrease of cellular populations and extracellular 
matrix) are most likely represent the next stage of 
intervertebral disc “development”, the result of which 
is a gradual destruction of its structures. Considering 
the degenerative processes of intervertebral discs 
in the context of embryogenesis, novel methods of 
biological treatment of this disease can be suggested. 
Application of autologous intervertebral disc cells 
cultured in vitro with their subsequent implantation is 
a promising method, which can compensate for cell 
deficiency, and, consequently, disc matrix. But to realize 
this approach, it is first of all necessary to study the 
viability and activity of the implanted material under the 
influence of various factors for a long period of time. 

Thus, a complex approach to the study of molecular and 
cellular mechanisms of intervertebral disc degeneration 
pathogenesis may help to discover new methods of 
biological therapy directed towards the regeneration 
of microstructure and biomechanical function of 
intervertebral discs.
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