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Here, we attempt to summarize our research conducted for more than twenty years. Back in 1997, we were the first to publish the 
data indicating that the type of cognitive task (spatial or arithmetic) performed by a subject can be identified with a reliability of 70 to 98% 
(dependent on a subject) by analyzing the EEG spectra and using an artificial neural network. Further research led us to the understanding 
that any sustainable mental activity was accompanied by characteristic rhythmic EEG patterns. Individual EEG rhythms (that in totality 
form a pattern) differ in their frequency and topography. Cognitive patterns of EEG rhythms have a number of fundamental characteristics. 
They are highly specific and stable in each individual and persist for years (slowly changing); they are also highly specific for each type of 
cognitive activity.

Later it was found that the arising patterns of brain rhythms were not only different for different types of cognitive tasks but also 
interrelated with each other in the way similar to the inter-relations of psychological characteristics of the tasks. Based on this finding, we 
have developed a method for creating a map of a person’s cognitive space. It turned out that, by using this method, one can draw maps of 
a human sensory-emotional space.

In experiments with the presentation of equivalent audial and visual tasks, we found that the EEG rhythm patterns reflected the very 
nature of mental acts, and not processes of sensory perception.

The developed methods for distinguishing between different mental states and for creating mental space maps have found their 
practical use including that in medicine. In mental illnesses, the thinking ability is impaired, which is manifested in changes in the cognitive 
rhythmic patterns of the EEG. When consciousness is depressed, the emotional-sensory spaces reflect rather the physical properties (and 
not the emotional content) of the stimuli presented to patients. 

The accumulated knowledge made it possible to develop a device prototype (called “cognovisor”), which allows for real-time tracking of 
one’s thinking process and displaying it on a map of the individual cognitive space.
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Introduction

Recognition of perception and thinking based 
on brain signals. The method of recognizing mental 
states from brain signals is often called “brain reading”. 
Notably, this term was first attributed to the technology 
of restoring the subjective content of the human brain 
by using functional MRI (fMRI) [1], and not EEG (as 
we proposed 8 years before the term appeared in the 
literature [2, 3]).

At the moment, the research into “brain reading” can 
be divided into several narrower specialized areas.

Recognition of categories of perceived objects 
by fMRI. In this specific field, the study of Haxby is the 
best known [4]. The subjects confined to a fMRI machine 
were presented with visual stimuli of several categories 
(houses, shoes, furniture, faces, etc.). By analyzing the 
activities of the higher visual and temporal associative 
regions of the cerebral cortex, the authors found 
differences between the activities caused by stimuli 

of different categories. Furthermore, each category of 
stimuli caused a specific multicomponent pattern of the 
MRI signal; it was impossible to find a single component 
related to the given category of stimuli. The authors 
were also able to determine a category of the object, 
which the subject is currently viewing. This recognition 
process was performed with a reliability of >95%. The 
quoted study proved it was possible to determine the 
subject’s cognitive state in real time using a brain signal 
(with an accuracy of up to the time resolution of the fMRI 
method — about 10 s).

A group of scientists led by Pietrini [5] performed 
similar experiments, but with the tactile presentation of 
stimuli to healthy subjects and to people who were born 
blind. It was found that tactile stimuli could also be well 
discriminated by categories, and that each category had 
its own brain activation pattern. It was also noted that the 
blind subjects used additional visual cortex to identify the 
tactile stimuli.

Shinkareva developed a technique to use the BOLD 
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signal for the recognition of subjects’ perception of 
images of tools or dwellings [6], thus confirming the 
results of Haxby.

The further development of brain reading research 
was a technologically sophisticated work [7]. In this, the 
subjects were presented with video fragments and then, 
using the fMRI signal and the Gabor filters, the entire 
video image was restored. Although the quality of the 
restoration was not ideal, the study aroused an interest 
and was then actively quoted.

Recognition of the nature of mental activity using 
fMRI. Most of all, ideologically close to our research 
were studies of Mitchell and his colleagues, in particular, 
the results described in their article of 2004 [8]. The 
authors asked the subjects to perform various cognitive 
tasks. For example, they showed a picture and then 
(after some time) a sentence. The subjects were asked 
to guess whether the sentence related to the picture or 
not. The tasks were presented repeatedly with parallel 
fMRI measurements.

The researchers aimed to distinguish between the 
time intervals whereby the subject performed various 
cognitive actions, for example, viewing a picture or 
comprehending a sentence. The mental states were 
recognized on a pseudo-real time scale with an accuracy 
of the time resolution of the method, which in this case 
was about 5 s. The support-vector machine turned out to 
be the best trainable classifier. The relative classification 
error for the above example of tasks was 0.11 (0 is the 
ideal classification; 0.5 is a random one).

The authors proposed that in the future this tool would 
allow one to track a person’s “trajectory of thought” and 
use it for training, cognitive research, and medicine 
(neurology and psychiatry). In [9], the same researchers 
were able to predict the patterns of brain activation upon 
presentation of verbal stimuli that had not been used 
previously.

The brain–computer interface (BCI) paradigm. 
The main purpose of the BCI is the control of external 
devices (trolley, exoskeleton, computer, etc.) by using 
electrical signals from the brain but not using muscle 
force. BCIs can be invasive (intracranial electrodes) 
or non-invasive (surface EEG). It is even more 
important that there can be so-called synchronous 
and asynchronous interfaces. The first are based on 
recognition of the evoked brain activity: for example, 
the “typewriter” BCI, which is based on the P300 
component of evoked potential. In a BCI of the second 
type (asynchronous) a person arbitrarily changes his/
her thoughts; the system, by analyzing the simultaneous 
EEG, guesses the thoughts and takes necessary 
actions. It is obvious that synchronous BCIs have 
limited and highly specialized fields of use (for example, 
establishing contact with a completely immobilized 
patient). On the contrary, asynchronous BCIs (if well 
developed) can find a wide and universal use in 
medicine and other areas of science and technology (for 
example, in industry or military).

Thus, non-invasive asynchronous BCIs are also, in 
essence, “brain reading” devices. As the main mission of 
the BCI is to control external devices, the mental states 
are often represented by imaginary movements [10, 
11]. In these systems, the power indices of the motor 
cortex rhythms in specific frequency ranges [10] or the 
event-related desynchronization [11] are used. In some 
cases, the accuracy of recognizing an isolated imaginary 
movement reaches 98% [11].

The BCI, based on imaginary movements, is being 
actively developed in Russia by a team led by Professor 
Frolov. The use of additional methods for processing the 
original signal (for example, the independent component 
analysis) has increased the reliability and sensitivity of 
the system [12, 13].

Recognizing the type of mental activity by EEG. 
There are just few reports about recognizing the mental 
states by using EEG — without linking it to applied tasks, 
as in the case of BCI [14, 15]. The study [14] has much 
in common with our research. The subjects maintained 
five consecutive mental states: rest, imagination of 
movements with the right or left hand, mental rotation 
of a cube, subtraction of numbers. A compact artificial 
neural network was used as the classifier to perform 
classification into three classes; the results were 
successful in some cases. Thus, the rest, the cube 
rotation and the imaginary hand movement differed from 
each other with a reliability of about 90%. The states in 
the “rest–subtraction–hand” triad also differed quite well. 
At the same time, the cube rotation and the subtraction 
tasks could not be reliably distinguished. Notably, in our 
report published five years earlier [2], the rotation and 
the mental arithmetic tasks differed from each other with 
an average reliability of 87% in six subjects.

In [15], short episodes of solving an arithmetic 
problem against the background of the current EEG 
were detected using multifractal analysis with about 
100% reliability.

Quantifying the mental activity and creating 
the respective spaces. Psychological quantification 
(scaling) has been used for decades; it has always 
been based on transformations of subjects’ answers 
(subjective psychological scaling) or on behavioral tests 
(objective psychological scaling). As a result, the so-
called perceptual spaces were obtained.

The approach to psychological scaling is based on 
the assumption that the judgment about a similarity or 
difference between two mental phenomena can be 
expressed in the form of distance between the points 
reflecting these phenomena in some space. The more 
similar the two mental phenomena, the closer to each 
other in space are the points representing them, and 
vice versa.

Scaling based on psychophysical experiments and 
creating a perception space was demonstrated in studies 
[16–20], and scaling based on questionnaires — in [21]. 
Notably, the above-mentioned studies were conducted 
in Russia in the 1970s and 1980s — in the heydays of 
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instrumental psychology in the Soviet Union. The most 
of credit goes, to E.N. Sokolov.

Of the current international publications on mental 
state mapping, the study based on fMRI is worth 
mentioning [22]. The authors depicted a semantic tree 
imposed on the straightened image of the cerebral 
cortex.

Thus, in the above section, we briefly reviewed the 
major publications, ideologically and/or methodically 
related to ours.

Methods
General design of the studies. For more than 20 

years, we conducted dozens of experiments, in which 
hundreds of subjects took part; yet all the experimental 
schemes have had common features.

1. In one experimental series, all subjects followed 
the same scenario. The subject performed several 
tasks, and for each of them, there were dozens of 
stereotypical variants. All tasks were mixed and 
presented in a random order. The difficulty of the tasks 
was chosen such that to keep the execution time 
around 10–20 s and not to exceed the percentage of 
errors beyond 30%. In experiments with emotions, the 
stimulation parameters were somewhat different from 
the above due to a specific nature of the process. On 
average, an experiment with one subject lasted for 1.5–
2 h with one or two breaks.

2. During the entire experiment, EEG recording 
was carried out using 19 electrodes set according to 
an extended system of 10–20%. Here, we used the 
standard EEG recording parameters: the digitization 
frequency was 250 Hz, with signal filters of 0.1 to 
70 Hz, the notch filter was 50 Hz, and the electrodes’ 
impedance was <10 kΩ. Throughout these years, we 
used EEG equipment of various kinds: Biotop (Japan), 
Medicor (Hungary), ATES Medica (Italy–Russia), and 
Medicom-MTD (Russia). Geographically, the first 
series of experiments were performed in Japan, at the 
Brain Functions Laboratory (Kawasaki); then, most 
of the experimentation was done at the Laboratory of 
the Human Higher Nervous Activity at the Institute 
of Higher Nervous Activity and Neurophysiology of 
the Russian Academy of Sciences in Moscow. The 
fact that the experiments conducted in different 
countries and laboratories using different equipment, 
gave fundamentally the same results is an additional 
argument for the validity of our results; it also suggests 
that we observe a universal and stable phenomenon that 
depends little on the methodological details.

3. In parallel with the EEG, notes were recorded along 
a separate channel and an electrooculogram was also 
recorded via two channels. With the help of a regression 
procedure (described in [23]), corrections for oculomotor 
artifacts were introduced. These corrections enabled our 
subjects to make free eye movements, specifically, we 
did not ask them not to blink.

4. All data processing was performed on the individual 
basis, separately for each subject.

EEG preprocessing. Prior to analyzing the EEG 
data, we preprocessed all EEG records.

1.   From the continuous EEG recording, we selected 
epochs corresponding to the fulfillment of tasks, 
and (in some cases) epochs from the inter-stimuli 
intervals corresponding to the state of operative 
rest. In experiments with emotions, EEG segments 
corresponding to the presentation of emotionally 
significant stimuli were chosen.

2.   We calculated the squares of the Fourier transform 
module for individual EEG records, loosely termed by 
us the “single power spectra”. The Fourier transform is 
chosen because the frequency spectrum provides an 
adequate and illustrative assessment of the rhythmic 
character of the EEG. The size of the EEG analysis 
window was 16 or 32 s, except for experiments with 
real-time (cognitive BCI and cognovisor, see below), 
where it was 2 or 4 s. The range of analyzed frequencies 
in the cognitive experiments was from 5 to 20 Hz; in 
experiments with emotions, the lower frequency level 
dropped to 1.6 Hz (to “capture” the delta rhythm). The 
rhythms of the upper beta range, as well as the gamma 
range, were not considered in this experimentation series.

3.   Additionally, averaged EEG power spectra, 
characteristic of each task or emotion, were created; 
that gave us a general visual assessment of differences 
between the EEG patterns.

EEG-based classification of mental states using 
an artificial neural network. As a classifier used for 
the recognition of mental states by EEG, we used a 
simple artificial neural network of the Perceptron type, 
described in [24]. A schematic image of this network is 
shown in Figure 1. At the input, the network is fed with 
samples of single power spectra in all electrode sites, 
lined up in a row. The output of the network encodes the 
class that has been recognized (the number of output 
elements equals the number of classes). The network is 
trained by one data set (training sample) and is tested by 
other data (control sample).

The efficiency of classification was calculated as 
the index of correct recognitions (ICR) in the control 
data sample. The threshold of a truly non-random 
classification was calculated. Having two classes 
with 30 stereotypical tasks in each class and with 
a significance of 0.05 (conventional in biology), the 
threshold for a truly non-random classification is 65%. 
In other words, if the ICR is higher than 65%, then the 
probability of a random result is lower than 0.05. Turning 
to the psychophysiological interpretation of these results, 
we suggest that if the ICR exceeds 65%, then the 
existence of specific rhythmic patterns in specific mental 
states is considered proven.

We chose the Perceptron network because it is 
simple, reliable, and easy for interpretation.

Creating cognitive (emotional) spaces. The key 
point in forming a space of the recorded data is the 
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right choice of metrics. Since we analyze EEG rhythmic 
patterns, the metric must be suitable to measure the 
distance between the patterns. A short distance would 
indicate that the rhythm patterns for the two compared 
mental states are similar, and a long distance — that 
they are different. In our studies, it was necessary 
to confirm or disprove the hypothesis, that similar 
psychological states generate similar patterns of EEG 
rhythms and, conversely, different mental states gave 
rise to strongly different patterns.

The method of calculating the distances [25, 26] 
is based on the assessment of the significance of 
the difference between the spectral data according 
to the Mann–Whitney U test for a statistical series of 
single power spectra. Then, the number of significant 
differences is normalized per the total number of spectral 
counts. The resulting index is a measure of the pattern 
differences (i.e. distance) ranging from 0 to 1.

After the distances between the patterns are 
calculated, their inter-relations were analyzed. To that 
end, we constructed a map, on which symbols depicting 
various patterns of EEG rhythms (and, accordingly, 
various mental states) were located on a plane so 
that the distances between the symbols reflected 
the experimentally measured indices of the pattern 
differences. This kind of problems can be solved using 
methods of multidimensional scaling. We used one 
of the simplest and most popular among them — the 
Sammon projection [27]. As a result, a “constellation” of 
mental states was visualized on the map.

Cognitive BCI. This technology is based on 
the hypothesis that in the process of continuously 
performed cognitive activity, the subject gets adjusted 
to this activity, and his/her EEG acquires a characteristic 

rhythmic pattern. By using biofeedback for training, the 
subject learns to maintain certain rhythm patterns so 
that his/her performance is expected to improve. In the 
below experiments, animation of task images was used 
for feedback: the subject was given a hint in case the 
real-time classifier detected the desired rhythm pattern 
in the EEG [28].

Cognovisor. Based on the accumulated data, a 
device prototype (cognovisor) was created; it allows 
for real-time monitoring of the thinking process and 
displaying it in the form of a “set point of consciousness” 
moving in an individual cognitive space. In cognovisor, 
the distances between the patterns of EEG rhythms are 
calculated using an artificial neural network.

The cognovisor prototype was tested in experiments 
with the presentation of eight types of cognitive tasks 
of two types — spatial and verbal. On the basis of the 
EEG pre-recording, an individual cognitive space of the 
given subject was built prior to applying the cognovisor. 
Then, the distance from the current EEG pattern to the 
patterns of the eight known mental states was calculated 
in real time. The set point was placed on the individual 
cognitive space map in accordance with the calculated 
distances. The technology is described in detail in [29].

Cognitive and emotional stimuli. In the 
experiments, numerous verbal-logical and spatial-
imagery stimuli were presented to the subjects. We also 
used tasks for the mental math abilities. Most cognitive 
stimuli were presented visually on a computer screen; 
in other experiments, four audial cognitive stimuli 
equivalent to the visual ones were also presented. In 
Figure 2, two typical visual stimuli (verbal and spatial) 
are shown; the subjects successfully classified these 
stimuli into two categories. The first task was to choose 

Nonlinear transform

Input (receptor) layer of elements

Output (effector) layer of elements

Link weights

Elements

Nonlinear transform

Figure 1. Scheme of an artificial neural network [23, 24]
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a figure from three gray figures, which after stretching or 
compressing will add the white figure to a square. The 
second task was an anagram, in which the subject was 
tasked to guess the word by rearranging the letters.

The emotional stimuli were presented in various 
sensory modalities: olfactory, tactile, audial, and visual. 
In each sensory modality, there were several stimuli 
that differed from each other by the subjective degree 
of pleasantness — from pleasant to unpleasant. In 
Figure 3, some of the stimuli are shown.

The subjects. In each series of experiments, there 
were several dozens of subjects (25–35 on average, 
except for the first experiments in Japan, in which only 
5 people took part). As a rule, the subjects were young 

university students, but middle-aged people participated 
as well. The ratio of men to women was about 2:1. In 
the 1992–1993 experiments, the subjects were all 
Japanese; in the later experiments, the subjects were 
citizens of the Russian Federation. Before starting 
the tests, all the examined persons were briefed on 
the experimental procedures and problems that might 
arise; the participants were then convinced that the 
procedure was completely safe. Before being tested, 
the subjects underwent a training course for solving the 
problems outside the test chamber and without setting 
the electrodes; during the training, they performed 
5–20 tasks of each type. In the due time, the study 
was approved by the Ethics Committee of the Institute 

Sea

Cry

  IAPS 

40 times for 8 s

IADS  

4 times for 30 s

Figure 2. Examples of spatial and 
verbal tasks:
(a) complement the top white shape 
with one of the gray shapes to make 
a square; (b) solve the anagram [28]

а b

pledad

Figure 3. Examples of emotionally significant stimuli
The variety of the stimuli is described in two scales: the evolutionary antiquity of the sense organ 
(the horizontal scale) and the pleasantness — unpleasantness (the vertical scale). Forty stereotypical 
(pleasant and unpleasant) visual and auditory stimuli were presented for 8 s each, and the tactile 
and olfactory stimuli were presented 4 times for 30 s each. The visual stimuli were borrowed from 
the International Affective Picture System (IAPS) database, and the auditory stimuli — from the 
International Affective Digitized Sounds (IADS) database. In the Figure, the unpleasant visual 
stimulus is redacted for ethical reasons; yet it was presented unchanged to the subjects who gave 
their informed consent
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of Higher Nervous Activity and Neurophysiology; the 
subjects signed their informed consent forms.

We emphasize once again that despite the differences 
in methodology and the diversity in subjects’ ethnicity, 
the results of our many experiments are very close to 
each other — both quantitatively and qualitatively.

Results
Differences in averaged EEG power spectra. 

Differences in the rhythmic patterns of EEG, as a rule, 
are clearly visible from the averaged power spectra. The 
spectra themselves are highly individual, but for each 
given individual they sustain (apparently) for the life-time 
with very slow changes as evidenced from long-term 
experiments in the same subjects over 10–15 years.

A few signatures of the thinking patterns are typical 
for many subjects; for example, those shown in Figure 4. 
At the bottom, four types of tasks are depicted: 1) road 
junction: you need to drive from point O to one of the 
points — A, B or C, without breaking traffic rules; 
2) logical judgment: based on the first statement, 
determine whether the second is true; 3) shape 

assembling: determine, which of the three shapes in the 
bottom can be assembled from the fragments shown 
above; 4) complex words: instead of points, insert letters 
that form the end of one word and the beginning of 
another. Obviously, assignments 1 and 3 are spatial, and 
2 and 4 are verbal (the first ones are marked in green, 
the second — in red). The left panel of Figure 4 shows 
averaged EEG power spectra in a subject performing 
tasks 1 and 2, and the right panel shows tasks 3 and 4. 
A signature of spatial thinking can be clearly seen: it is 
the rhythm of ~11 Hz in the central and front leads (more 
on the right); for the verbal thinking, the rhythm with a 
frequency of ~8 Hz in the same leads (more on the left) 
is characteristic.

Recognition of the type of thinking from EEG 
spectra using an artificial neural network. In all our 
experiments, the ICR (with a classification into two or 
three classes) was much higher than the threshold of 
a truly non-random classification. In most cases, the 
average value for all tasks and all subjects was 87% 
(with the threshold of a truly non-random classification 
of 65%). Below, we report the specific values of the ICR 
obtained in various experimental series.

Figure 4. Averaged EEG power spectra of a subject performing four types of tasks 
Frequency range: 5 to 18 Hz; specific spectral power range: 0 to 18 µV2/Hz. See text for details

Lena is taller than Rita
and shorter than Tanya. 

Is Rita taller than Tanya?

 TRA(...)vET

Hz

40 µV2/Hz
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1.   Brain Functions Laboratory, Japan, 1992–1993 
[2]. The stimuli: spatial tasks (as in Figure 2 (a)) and 
tasks on mental arithmetic (addition of two multiplication 
products). The state of operative rest was also presented 
for recognition; thus, the classification was carried out 
in three classes. The average ICR was 90, 84, 96% 
for the three classes, respectively. The average ICR 
for the mental tasks was 87%. The rest state was best 
recognized by the occipital-parietal alpha rhythm.

2.   Institute of Higher Nervous Activity and 
Neurophysiology, 1998 [30]. The stimuli: a logical 
judgement (as in Figure 4) and a spatial task (as in 
Figure 2 (a)). The average ICR was 84 and 91%, 
respectively, with an average value of 88%.

3.   Institute of Higher Nervous Activity and 
Neurophysiology, 2007 [31]. The stimuli: eight types of 
tasks (Figure 5); of those, four — spatial tasks (including 
the “cube section” task, not mentioned above) and four 
verbal ones. The average ICR values for the group of 
subjects have the following meaning:

1) two specific types of tasks related to different types 
of thinking are recognized with an ICR of 86%;

2) two types of thinking (spatial vs verbal) with an ICR 
of 76%. In this experiment, the presented tasks were 
not those used in the training session. For example, the 
training included anagrams and complementary shapes, 
but the test included complex words and a road junction. 
With the ICR value exceeding the threshold of non-

randomness, it can be argued that spatial and verbal 
thinking had common EEG rhythmic signatures, which 
are invariant for a specific type of mental activity;

3) a variety of tasks within one type of thinking can 
also be recognized: verbal vs verbal — with a reliability 
of 73%, and spatial vs spatial — 72%. This suggests 
that specific types of cognitive activity have their own 
specific signatures, manifested in specific EEG rhythm 
patterns although these individual signatures are minor 
as compared to the fundamental types of thinking.

4.   Institute of Higher Nervous Activity and 
Neurophysiology, 2015 [32]. The independent 
component analysis was used to determine the optimal 
set of components needed to produce the best possible 
classification. As a result, the ICR value increased from 
87 to 89% (less than we expected).

The sensory modalities of the stimuli and the 
cognitive rhythmic patterns. For this experimentation, 
we developed 4 types of tasks to be presented 
in the visual mode and their 4 analogues for the 
audial presentation [33]. The list of tasks included: 
1) a modified “cube section” task; 2) a simple planimetric 
task; 3) a search for one of four redundant words (the 
solution is not obvious, since some words have a 
double meaning); 4) composing a sentence with words 
beginning with the letters of the presented word.

Averaged power spectra were evaluated visually and 
analytically. According to the results, the EEG rhythmic 

Figure 5. Eight tasks of two types (four spatial and four verbal) and their ICR values
See text for explanation

cir(***)vis

MELPSA

Petya is older than 
Vasya and younger 

than Sasha.  
Is Vasya older  
than Sasha?

Tanya is taller than 
Rita and shorter  

than Lena.  
Is Lena shorter  

than Rita?
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patterns reflect the task content regardless of 
the way of presentation (audial or visual). Then, 
we concluded that the sensory modality of the 
stimulus had little impact on the EEG activity 
(Figure 6).

Creating cognitive space maps. In these 
studies (described in detail in [25, 26]), we aimed 
to show that the EEG rhythms patterns were 
not just specific for different types of cognitive 
activity, but also related to each other as much 
as did the psychological properties of the tasks.

For these experiments conducted in 30 
healthy subjects aged 18 to 55, a group of 
special stimuli was developed; those differed 
by the spatial, figurative and verbal properties. 
A total of 6 types of stimuli were created, each 
contained 60 stereotypical tasks as follows 
(Figure 7): 1) a puzzle with crossing lines (insert 
the missing fragment from those shown below); 
2) a puzzle with crossing word (same as 1, but 
with words instead of lines); 3) find a picture in 
the bottom row that is not related to any picture 
on the top; 4) the same, but some of the pictures 
are replaced by words; 5) find a specific word 
in the list of four that is not associated with any 
on the top; 6) find an abstract word that is not 
associated with any on the top. The “concrete 
words” denote well-imaginable objects. The 
“abstract words” denote general concepts.

The degree of spatiality decreases from tasks 
of the 1st type to tasks of the 6th type, and the 
degree of verbality, on the contrary, increases. In 
addition, tasks of the 3rd type have a significant 
degree of figurativeness; tasks of the 4th and 5th 
types take a place between tasks of the 3rd and 
6th types.

According to the method described above, 
a map of cognitive space was constructed. 
In addition to constructing a map based on 
electrophysiological data, we also asked a 
number of experts to comment about the stimuli 
used in this study. The experts — 20 professional 
psychologists — gave their assessment of the 
“spatiality”, “figurativeness”, and “verbality” using 
a 10-point scale. The technique is described in 
detail in [26].

Figure 8 presents two maps of cognitive 
spaces averaged over all subjects. The first map 
was obtained from the EEG rhythm analysis by 
averaging the individual maps. The second map 
presented in Figure 8 was obtained by averaging 
the scores suggested by the experts. The maps 
matched well: the vector correlation coefficient 
was 0.98. Therefore, we conclude that the space 
of rhythmic EEG patterns is isomorphic to the 
space of psychological characteristics of the 
types of cognitive activity during which these 
patterns are recorded.

Brain Rhythms Patterns as a Reflection of Mental Processes
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1. Ocean
2. Crocodile
3. Picture
4. Sky

1. Cube
2. Notebook
3. Wings
4. Door

1. Standard
2. Luckiness
3. Failure
4. Crime

Interest
Guilt
Luck
Reference

Hat Gate

Letters Beak

Figure 8. Objectively and subjectively determined cognitive spaces
Cognitive space maps obtained by expert opinions of psychologists (a) and by quantitative analysis 
of brain rhythms (b). Top — types of tasks (the same as in Figure 7, and with the same color codes)

Imagery Imagery

Spatiality SpatialityVerbality Verbality

Figure 7. Tasks with gradually changing degrees of spatiality, imagery, and verbality
The tasks are described in detail in the text. The colors (according to the rainbow color sequence) encode the psychological char-
acter of the tasks: blue — spatiality, red — verbality, and green — imagery

Expert evaluation by 20 psychologists EEG data of 30 subjects

а b

Sensory-emotional space. Several studies 
demonstrated the dependence of EEG rhythms on 
emotions [34–36]. Along with that, in behavioral linguistic 
experiments, an association of the emotional valence of 
words with sensory modalities has been shown [37, 38]. 
According to the latter authors, this may be due to the 

fact that adjectives, which constitute the main part of the 
affective lexicon and describe various sensations, are 
closely related to the specific sensory experience.

Based on our studies in patients suffering from 
the oppression of consciousness, as well as studies 
in children presented with emotionally significant 
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stimuli in different sensory modalities, we came to the 
following conclusions [39, 40]: 1) under suppressed 
consciousness, perception of strongly negative 
emotional stimuli by patients is improved as compared 
to neutral stimuli; accordingly, their impact on the EEG 
is more pronounced than that of neutral stimuli, which 
are often not perceived at all; 2) the presentation of 
stimuli via the ancient sensory organs (touch and 
smell) causes a greater response (both behavioral and 
electrophysiological); 3) in children, the stimuli sent via 
more ancient sensory organs, as well as more affective 
stimuli, cause a response at an earlier age.

We then addressed a question: whether opposite 
emotions associated with different sensory modalities 
are reflected in the EEG rhythms in an orderly and 
regular way? To get the answer, we constructed a 
mental space to analyze the EEG data obtained in the 
above experiments where emotional stimuli of different 
signs were presented in four sensory modalities (see 
Figure 3) [41].

The results are shown in Figure 9. Here, a map 
averaged over 20 subjects is shown. Two features 
emerged from the map: 1) the negative stimuli were 
located on the left of the positive ones; 2) the stimuli 
presented via the evolutionarily older organs of sense 
were located lower.

Thus, we succeeded in constructing a two-dimension 
space map: the horizontal axis reflected the emotions 
and the vertical axis — the evolutionary age of the 
sensory modality. We termed the resulting space 
“sensory-emotional”.

Summarizing this section, based on the experiments 
with emotionally significant stimuli, we once again 
confirmed that the space of rhythmic EEG patterns was 
isomorphic to the mental space, in this case — sensory-
emotional.

Rhythmic EEG patterns in schizophrenia. A mental 
illness impairs cognitive functions, which is especially 
noticeable in schizophrenia. Since, as we have shown, 
thinking is well reflected in the rhythmic EEG patterns, 
a question was asked whether mental abnormalities 
developing in schizophrenia would manifest in EEG 
rhythmic patterns.

To answer the question, a group of patients diagnosed 
with schizophrenia was examined with the help of the 
rhythmic EEG patterns recognition technique based on 
an artificial neural network [42–44]. The data were then 
compared with the results obtained in healthy subjects. 

The patients were presented with the same tasks as 
were the healthy subjects, although in a simplified form. 
Anagrams were reduced to four letters; in the search for 
a complimentary fragment, the requirement to scale the 
shapes was omitted.

We found that in some types of schizophrenia, the 
ICR of mental states was significantly reduced as 
compared with that in healthy subjects. In patients with 
positive symptoms of schizophrenia, no decrease in the 
quality of the recognition with the artificial neural network 

was observed. These were patients with a single episode 
of the disease or with sporadic (once in a few years) 
acute attacks with a pronounced affective component. 
Along with that, the interictal period was characterized 
by excellent remission: the patients took a job and 
maintained social connections; also they were critical of 
their illness and compliant in terms of psychiatric care.

A decrease in the ICR was observed in patients with a 
severe form of the disease. These patients experienced 
frequent hospitalizations, incomplete remissions with 
residual symptoms, flattening of affect, and poor social 
adjustment.

Using a detailed statistical analysis, we then found 
that the ICR decrease was associated with a greater 
than usual variability of the EEG patterns characterizing 
a specific type of thinking. The increased instability 
of EEG patterns could be explained by an imbalanced 
salient mechanism: patients could not concentrate 
on tasks, their thinking was unstable, random, poorly 
focused on results, distracted by obsessive ideas and 
paradoxical associations. 

Deformation of the sensory-emotional space in 
depressed consciousness. As mentioned above, by 
presenting emotionally significant stimuli in different 
sensory modalities to healthy subjects, a map of the 
sensory-emotional space can be constructed. This 
map reflects both the sensory aspect of perception and 
the emotional valence of the stimuli. However, when 
consciousness is depressed (for example, in patients 
with severe brain injury), the map has become modified 
so to solely reflect the physical parameters of the stimuli, 
but not their emotional content [45].

Cognitive BCI. In this study [28], we tested a 
technique aimed at improving the cognitive activity and 
accelerating the training process. In the control group, 
the subjects participated in three identical experiments 
(with an interval of several days between them) where 
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Figure 9. Map of the sensory-emotional space averaged 
over 20 subjects
The horizontal axis of the space is a measure of emotions; the 
vertical axis indicates the evolutionary antiquity of the sense 
organ
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and display it as a “set point of 
consciousness” on the map of an 
individual cognitive space. 

Figure 10 schematically 
represents the work of the 
cognovisor with alternating tasks of 
8 types. In these actions, the “set 
point of consciousness” is moving 
across the screen so to result in an 
animated picture. In Figure 10, this 
set point is marked with a cross in 
four consecutive positions related 
to solving different types of tasks.

In this experiment, we observed 
an interesting phenomenon. Often, 
the set point comes to the correct 
cognitive state (corresponding 
to the task being solved), but 
then unexpectedly returns to the 
previous task for a short time, and 
then moves to the current one. 
This “behavior” correlates with the 
self-reports of the subjects, who 
say they sometimes return to the 
previous task in order to complete 
it, if they did not have time enough 
to complete it at the first attempt 

or they were not sure of the correct answer. Hence, 
this simple device prototype makes it possible to see a 
hidden feature of thinking.

Discussion
Brain rhythms — a substrate of consciousness. 

The above results, in our opinion, reflect the common 
phenomenon, namely: the brain rhythms do not just take 
part in the mental activity, but form its basis and can be 
called “a substrate of consciousness”. Accordingly, the 
rhythmic EEG patterns arising in the process of mental 
activity are highly specific, stabile (probably lifelong), 
and individual. Moreover, the rhythmic patterns do not 
only differ from each other in different mental states, 
they orderly inter-correlate so to form a space that is 
isomorphic to the space of the human psyche.

The role of patterns. The human psyche is a 
multicomponent and multifactorial phenomenon. Any 
thought or feeling is a result of many interacting neural 
processes. Therefore, things like cognitive tasks or 
various emotions generate complex patterns of brain 
activation. To identify such a complex mental process, 
it is hardly possible to rely on a single discriminating 
parameter of brain signals [4, 5].

Despite its complexity, such a multicomponent 
pattern by itself is a stable unit. The human psyche, for 
all its complexity, is a well-ordered mechanism, which 
operates according to well-defined laws and has a 
certain structure. Therefore, the mental state (cognitive 
or emotional) of a healthy person is a highly organized, 

Figure 10. How the cognovisor works
The circles denote spatial tasks, the rhombi — verbal tasks; the symbol sizes reflect 
the degree of spatiality or verbality; below depicted the tasks corresponding to the 
symbols on the cognovisor panel

Spatiality Verbality

lidnas tra(***)vet

Lena  
is taller than Tanya  

and shorter than Rita.  
Is Rita shorter  
than Tanya?

Sasha is older  
than Petya 

and younger  
than Vasya.  

Is Petya younger  
than Vasya?

they were presented with tasks, similar to those shown 
in Figure 2.

In the experimental group, the second experiment 
included feedback: after the rhythmic EEG patterns 
typical of a certain activity appeared, the subject was 
given a hint (for example, the figures in the spatial 
task were turned so that the problem became easier 
to solve). The reference patterns were obtained in the 
first experiment. In the third experiment, the behavioral 
parameters of cognitive activity (time and correctness 
of the solution) were assessed in both groups; in 
addition, the index of neural efficiency was assessed 
in accordance with the idea of the Austrian school of 
Klimesch [46]. 

In these experiments, we found that the feedback 
based on EEG rhythm patterns facilitated the learning 
process required for solving anagrams. In the 
experimental group, the anagram solution time was 
significantly reduced by 30%, while in the control group 
there was no significant change in the solution time. 
For spatial tasks, no behavioral effect was detected. 
An improved neural efficiency was found for both types 
of problems only in the experimental group. 

Thus, we demonstrated the possibility of an effective 
cognitive BCI.

Cognovisor. The cognovisor [29] works in a two-step 
mode: preliminary and main. At the preliminary stage, 
the previously recorded EEG of a subject is used to 
build the cognitive space and calculate the “Perceptron” 
classifying weights. In the main stage, the cognovisor 
works to track the current mental state in real time 
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stable, and individually adjusted set of processes 
that has been developed during human evolution and 
ontogenesis. This set is reflected in the specific pattern 
of brain signals. In mental diseases, this well-organized 
structure may be damaged, which can be seen from the 
discoordinated patterns of EEG signals, which become 
unstable and disconnected from each other.

Comparison with other studies on brain reading. 
Most of the reports cited in the Introduction described the 
recognition of perceived objects of various categories. In 
our work, complex cognitive and emotional processes 
are recognized. In our own studies, we interpret the 
obtained results as reflecting a common phenomenon. 
It’s worth noting that some of our studies were conducted 
prior to those published by others and quoted in the 
Introduction.

Possible practical applications of the techniques. 
With their further development, the cognovisor and 
cognitive BCI can be used for training, professional 
selection, diagnosis of mental disorders, and, as we 
believe, in rehabilitation of patients with brain diseases. 
Creating mental space maps can become a useful 
tool in diagnosing depression of consciousness and 
in predicting the course of diseases, as well as in 
monitoring the psychological status of children with 
developmental disabilities.

Problems to solve. There are two major unanswered 
questions regarding the described approaches: 1) What 
is behind the extremely high inter-person variability 
of cognitive and emotional patterns of EEG rhythms? 
2) What are the neurophysiological mechanisms that 
generate the observed rhythms?

To answer the first question, we can suggest several 
possibilities.

1. The reason lies in the variability of skull and brain 
anatomy between different individuals. To us, this 
hypothesis seems the least plausible. Morphological 
differences could lead to a quantitative difference in 
individual patterns, but not to a completely different 
profile, which we actually observe.

2. The reason lies in the difference between various 
cognitive styles. This hypothesis seems more plausible. 
However, simple tasks would have to be performed by 
most people in the same or similar way. The difference 
in cognitive styles can, in our opinion, contribute to 
the variability of individual rhythmic EEG patterns, but 
cannot explain the huge difference we observed.

3. The mental procedures performed by the subjects 
while solving tasks are similar to each other, but 
these procedures are supported by different rhythmic 
processes. In other words, the rhythms that ensure the 
performance of the same mental functions can differ (for 
some reason not clear to us) in different people. These 
rhythmic mechanisms are formed in the process of 
individual intellectual and emotional development, but, 
having formed, remain unchanged for many years.

It should be noted that the brain activation patterns 
obtained in fMRI experiments show significantly less 

inter-person variability, and its explanation fits into the 
above assumptions 1 and 2.

When searching for the answer to the second 
question about the neurophysiological processes, we 
made assumptions and tested them. Thus, the central 
rhythm at a frequency of ~11 Hz (often arising with the 
performance of spatial tasks) can be interpreted as 
a mu rhythm reflecting the suppression of movement 
that unintentionally arises in spatial imagination. We 
tested this hypothesis by running a specially designed 
experiment [47]. Two different tasks were offered to 
the subjects: 1) solve a spatial problem; 2) initiate or 
suppress the hand movement shown on the screen (the 
Go-Nogo paradigm). In most subjects, this 11 Hz rhythm 
appeared in both tasks: spatial thinking and suppression 
of movement. This rhythm was identified by the 
independent component analysis in each person tested, 
and then its dipole source was found. The position of 
the dipole was identical under the two experimental 
conditions, which confirmed the initial hypothesis.

The frontal theta rhythm detectable in the spectra of 
many subjects (see, for example, Figure 6) performing 
visually presented cognitive tasks can be attributed to 
the reflex of orientation or the attention focused on the 
stimulus or the activation of short-term memory [48, 49].

For the central (mostly, right-sided) 8 Hz rhythm that 
often occurs in verbal and logical tasks we have no 
unambiguous explanation. Speculations on this issue 
are discussed in [23].

In some individual cases, we cannot explain part of 
clearly detectable stable rhythms.

Conclusion
From our studies conducted over the reviewed period, 

we can conclude that: 
1. In the process of mental activity in humans, 

characteristic EEG rhythm patterns appear; those are 
unequivocally compatible with the nature of cognitive 
operations performed. These rhythm patterns are 
individually specific and persist over time. They form 
a stable electroencephalographic “portrait” of the 
individual.

2. The rhythmic patterns are inter-related with each 
other in a manner that can be identified by introducing 
the metrics on their space. Then, by analyzing the 
rhythms, one can create an EEG map of a person’s 
cognitive space.

3. A similar map can be constructed for the sensory-
emotional space.

4. The cognitive patterns of brain rhythms become 
unstable in some mental disorders, especially in 
negative form of schizophrenia.

5. EEG maps reflecting the emotional space 
of an individual can be distorted by oppression of 
consciousness; then, they would reflect the physical 
qualities of the stimuli rather than their emotional 
content.

Brain Rhythms Patterns as a Reflection of Mental Processes
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The obtained results can be used for the development 
of novel techniques, similar to the above mentioned 
cognitive BCI (which facilitates training for some types 
of activities) or the cognovisor — a device for visualizing 
the current cognitive state of a person.
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