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Increasing resistance of microorganisms to antibiotics has encouraged researchers to seek alternative antimicrobial therapy. The 
review studies the prospects for using bacteriocins as antibacterial drugs. The definition of bacteriocins is given and their difference from 
traditional antibiotics is explained. The modern classification of bacteriocins, their properties and mechanisms of action are presented. 
Examples of the main bacteriocin-producing bacteria representing normal human microbiota are given. The authors investigate the role 
of bacteriocins produced by microbiota in maintaining mucosal resistance and stabilizing the human microbiome as well as the possibility 
of their application in creating probiotic drugs. The advantages and disadvantages of bacteriocins as alternative antibacterial drugs are 
described. The applications of bacteriocins in antimicrobial therapy, as well as methods for their industrial manufacturing, are discussed.

Key words: bacteriocins; antimicrobial therapy; normal human microbiota.

Corresponding author: Maya I. Zaslavskaya, e-mail: maya_zaslav@rambler.ru

M.I. Zaslavskaya, T.V. Makhrova, N.A. Aleksandrova, N.I. Ignatova, I.V. Belova, A.G. Tochilina, I.V. Solovyeva

Introduction

A sharp increase in bacterial resistance to antibiotics 
[1, 2] poses difficulty in conducting effective antimicrobial 
therapy. Besides, side effects of antibiotics, such as 
cytotoxicity, suppression of normal human microbiota, 
the likelihood of allergic and autoimmune diseases can 
also impose restrictions on the use of these drugs [3, 
4]. All this necessitates the search for new approaches 
and treatment regimens for infectious diseases [2, 
5]. The use of bacteriocins in alternative or combined 
antimicrobial therapy seems to be a possible solution to 
this problem [6, 7].

Classification of bacteriocins  
and their mechanisms of action 

Bacteriocins are a large group of peptides secreted 
by individual bacteria with antimicrobial activity. In 
contrast of antibiotics acting as antimetabolites, 

bacteriocins cause damage to bacterial cell structures 
and subsequent cell death [7–13]. Such peptides are 
produced by most species of bacteria, though this ability 
is strain-dependent [7]. The biocidal effect of these 
peptides is likely to manifest itself not only in strains of 
the same species, but also in representatives of other 
species and genera. The range of antimicrobial activity 
of bacteriocins is somewhat narrower than that of 
antibiotics as it is determined by presence of receptors 
for their adsorption in target bacteria [14].

Bacteriocins are classified based on several 
characteristics: the primary molecular structure, 
molecular weight, the presence of post-translational 
modifications, physical and chemical properties, the 
range of antimicrobial activity, the mechanism of 
antimicrobial action, receptors of target cells and genetic 
characteristics [7, 8, 13–17]. There are three main 
classes of bacteriocins (Table 1). Notably, bacteria of the 
same strain are able to secrete bacteriocins belonging to 
different classes.
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Among class I bacteriocins, lantibiotics are the 
most well studied group. They are post-translational 
modified antimicrobial peptides of small size (<5 kDa) 
characterized by unusual amino acids: lanthionine 
(Lan), α-methillothionine (MeLan), dehydroalanine, and 
dehydroretinol [18]. When intramolecular bonds are 
formed, their serine and threonine residues dehydrate to 
dehydroalanine and dihydrobetulin respectively [7]. 

Class I molecules can be grouped as type A or B 
according to their chemical structure and antimicrobial 
action [18]. Type A lantibiotics are positively charged 
elongated screw-shaped peptides with the average 
molecular weight of 2–4 kDa. The shape and charge 
of type A molecules facilitate formation of pores in 
membranes and depolarization of the latter in sensitive 
bacterial cell species, which leads to their lysis [16]. 
Type B lantibiotics (2–3 kDa) are globular peptides 
with negative or neutral charge. These peptides exhibit 
antimicrobial activity through cell lysis and inhibition of 
major bacterial enzymes [19–23]. Type B lantibiotics 
increase membrane permeability and reduce ATP-
dependent transport of proteins and ATP-dependent 
calcium absorption in sensitive bacterial cells, which 
results in cytolysis [24].

Class II bacteriocins are small (<10 kDa), heat-
stable peptides containing no lanthionine. They can be 
subdivided into subgroups a, b, c, d, e based on amino 
acid sequences and functions. Subclass IIa bacteriocins 
kill target cells by increasing the cell membrane 
permeability, which causes release of cytoplasmic 
components through the membrane and cell death. 
Subclass IIb bacteriocins act as pore-forming peptides 
[25]. Subclass IIc peptides have different mechanisms of 
action on membrane permeability and cell wall formation 
in bacteria [26], while subclass IId bacteriocins are linear, 
single-peptide molecules with similar antimicrobial activity.

Class III bacteriocins consist of proteins with high 
molecular weight (>30 kDa). This class is subdivided into 
subclasses IIIa and IIIb. Subclass IIIa (bacteriolysins) 
includes peptides destroying bacterial cell membranes, 
thus causing lysis and subsequent cell death [27]. 
Subclass IIIb comprises peptides that do not damage 
the potential of target cell membrane. Target cell death 
occurs not by cytolysis, but due to ATP outflow [16].

Bacteriocins can be identified according to the specific 
name of bacteria producing them: e.g., Escherichia 
coli synthesizes colicins, enterocins are produced by 
Enterococcus spp., etc. However, many of the molecules 
have their own original names: nisin, mersacidin, etc.

Bacteriocins of normal microbiota  
and their significance for the human microbiome

Bacteria of normal microbiota, representatives of 
the microbiome, are a permanent source of bacteriocin 
production, playing a significant role in human life. 
Microbiota forms colonization resistance barrier limiting 
contamination of the mucous membranes by pathogenic 
and non-resident opportunistic microorganisms, it 
is involved in stimulation of lymphoid tissue, vitamin 
formation, etc. [28].

In recent years, the concept of “co-immunity” has 
gained popularity. It suggests that a macroorganism 
can be protected by both its own immune system 
and components of its normal microbiota [29]. 
Representatives of the human microbiome producing 
bacteriocins have an ecological advantage over other 
strains in vivo, which indicates the significant role of 
these antimicrobial peptides in formation of an ecological 
niche [30]. Differences in specific composition of 
biotopes affect the density of secretion and the types 
of bacteriocins found in different parts of the human 

Bacteriocins of Microbiota and Antibiotic Therapy

T a b l e  1
Functional classification of bacteriocins and their possible mechanisms of action 

Bacteriocins Receptor variants Possible action on the target cell
Class I — post-translationally modified
   Subclasses:
   lantibiotics
   sactibiotics, etc.
These are heat-resistant peptides  
with molecular weight less than 10 kDa 

In some cases, the receptor  
is a precursor of peptidoglycan,  
lipid II 

Formation of pores  
in the bacterial membrane, 
inhibition of bacterial enzyme 
activity 

Class II — unmodified, or cyclic
   Subclasses:
   IIa–IIe
These are heat-resistant peptides  
with molecular weight less than 10 kDa 

Class IIa bacteriocins bind  
with the receptor  
of mannose phosphotransferase 

Increased membrane 
permeability due to formation  
of ion-selective pores 

Class III
   Subclasses:
   IIIa, IIIb
These are thermolabile proteins 
with molecular weight more than 30 kDa

Underexplored Cleavage of bacterial cell wall 
peptidoglycan, ATP release  
from cells 
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body. The highest concentration of bacteriocins was 
revealed in samples from the vagina, the respiratory 
tract, and the oral cavity, while intestinal samples 
showed the lowest concentration [31]. Bacteriocins are 
believed to allow indigenous commensal bacteria to 
occupy several ecological niches as well as establish 
long-term relationships with other representatives of 
the biocenosis and commensal relationships with the 
host [31]. Regulation of a bacteriocin production system 
may be pheromone-dependent [16, 32]. A bacteriocin 
peptide can function as a pheromone inducing its own 
production. When bacterial cell density becomes high, 
the auto-induction loop is activated and bacteriocins 
are produced in high concentrations [16]. Thus, these 
peptides are synthesized intensively to affect similar 
species only when the bacterial density in the biotope is 
high enough to inhibit the growth of competitive strains. 
Production of bacteriocins in biofilms also suggests 
balanced competition and coexistence of organisms in a 
microbial community [33].

Bacteriocin synthesis by representatives of normal 
microbiota is considered to be one of the mechanisms of 
quorum sensing, which allows bacteria to communicate, 
coordinate their actions and synchronize group behavior 
through secretion of diffusing signal molecules [34]. 

In the process, strains producing “weak” 
bacteriocins have greater chances of 
survival in the biotope: they are less toxic 
to competitors, cause mild expression 
of bacteriocins on the part of the latter, 
which results in controlled competition 
and development of dynamic equilibrium 
in the population [35–38]. This fact may 
also explain the predominance of weak 
bacteriocin producers in nature [35].

Among the representatives of the 
human obligate microbiota, the range 
of bacteriocins from lactic acid bacteria 
of Lactobacillus, Bifidobacterium, and 
Enterococcus genera (lactobacilli, 
bifidobacteria, enterococci) [10, 15, 39–43] 
and from Escherichia coli [44] have been 
quite well-studied so far (Table 2).

Lactic acid bacteria of normal microbiota 
are most often the basis for the selection of 
strains in production of various probiotics 
[45–50]. Recently, metabiotics (preparations 
developed on the basis of the structural 
components of microbial cells, metabolites 
and signal molecules of probiotic strains 
and devoid of potential pathogenicity 
and other imperfections inherent in living 
bacteria) have been actively introduced 
into medical practice [51]. In production of 
various probiotic drugs and functional food 
products, it is considered preferable to use 
strains with a good ability to synthesize 
bacteriocins. These inhibit pathogens 

directly, they are able to modulate the composition of 
the microbiota positively and stimulate the host immune 
system [52, 53].

Advantages and disadvantages of bacteriocins  
as antibacterial agents

Bacteriocins have a number of advantages as 
antimicrobial substances. Unlike antibiotics suppressing 
metabolism and synthesis processes in bacteria, the 
action of bacteriocins is often accompanied by damage 
to the structures and death of the target cell, which 
reduces the possibility of microbial resistance. Besides, 
using bacteriocins is potentially advantageous due to 
their high biological activity (bacteriocins are efficacious 
in the nanomolar range) as well as low toxicity (except 
cytolysin) [54]. Unlike antibiotics, bacteriocins are 
completely metabolized in the human body, which 
determines their low toxicity. All this makes the use of 
these peptides more preferable than antibiotics in some 
cases [55, 56].

The advantages of bacteriocins also include their 
protein nature, which allows obtaining these peptides 
through bioengineering [57]. Bioengineering products 
are likely to have increased biological activity against 

T a b l e  2
Examples of bacteriocins produced by enterococci, lactobacilli,  
and bifidobacteria 

Groups of 
bacteriocins Enterococci Lactobacilli Bifidobacteria

Class I
Lantibiotics Cytolysin

Enterocin W
Lactocin S
Carnocin U149
Plantaricin W
Lacticin 3147
Lactocin B
Amylovarin
Thermophylin A 

Bisin
Thermophilicin B67
Bifilong

Class II
Subclass IIа Enterocin А

Enterocin SE-K4
Enterocin CRL-35

Sakacin А
Sakacin 674
Curvacin А
Plantarcin 423
Sakacin G

Bifidin 
Bifidin 1
Bifidocin B
Bificin C6165

Subclass IIb Enterocin 1071 
Enterocins L50 
Enterocins С

Plantaricin E/F
Plantaricin J/K
Plantaricin NC8

Subclass IIс Enterocin В
Enterocin Р

Subclass IId Bacteriocin 31 
Enterocin I
Bacteriocin AS-48

Class III
Subclasses IIIа, IIIb Enterolisin А Helviticin J Bifilong Bb-46

Bifilact Bb-12
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certain pathogens as well as improved physical and 
chemical properties (solubility, resistance to protease 
and pH changes), which further increases their value 
and efficacy as antimicrobials.

However, bacteriocins, despite great potential for use 
in clinical practice, have a number of disadvantages. 
It should be remembered that bacteriocins undergo 
proteolytic degradation when administered orally. 
Nevertheless, it is possible to eliminate this defect 
by using encapsulation technology or parenteral 
administration of the drug [57]. In addition, efficacy 
of some lantibiotics is likely to decrease due to their 
instability in conditions of fluctuating neutral and 
alkaline pH values, but the way to solve the problem is 
obtaining substances with increased stability by means 
of bioengineering [58].

It should be noted that bacteria are able to develop 
resistance to bacteriocins [59, 60]. Several mechanisms 
of bacterial resistance to lantibiotics have been described 
[61–66]. There are data on development of resistance to 
class II bacteriocins in laboratory setting [67].

Rather narrow spectrum of antimicrobial action is also 
able to limit the use of bacteriocins in clinical practice. It 
is possible to compensate for this disadvantage partially 
or completely when using bacteriocins in combination 
with other existing antimicrobials such as antibiotics.

Possibilities of using bacteriocins  
in antimicrobial therapy

Bacteriocins can be used to inhibit both exogenous 
microorganisms and the indigenous human microbiota. 
In particular, the possibility is considered of using 
bacteriocins in targeted (molecularly targeted) therapy 
for selective inhibition of polyresistant endogenous 
(auto) strains of microbiota in order to prevent antibiotic-
resistant opportunistic infections difficult or impossible to 
treat [68].

Bacteriocins have their own antimicrobial potential 
that can be realized in treatment of infectious diseases 
[69]. However, combining these peptides with other 
existing antimicrobials is believed to be optimal in their 
clinical use [57]. The use of “bacteriocin-antimicrobial” 
combinations is expected to help enhance the 
microbicidal effect and thereby reduce the likelihood 
of developing resistance to both bacteriocin and 
antibiotic [57]. Notably, the antimicrobial effect of the 
combined medication is achieved owing to the fact that 
the subcomponents may have different mechanisms 
of antimicrobial action aimed at the same or different 
targets. Combinatorial therapy with bacteriocins can both 
broaden the antimicrobial spectra (which may be useful 
in treating infections of unknown etiology) and diminish 
or eliminate adverse side effects completely by reducing 
the concentration of antibiotic [70, 71]. In the latter case, 
synergistic combinations of bacteriocins and antibiotics 
will also help to reduce costs associated with the use of 
expensive antibiotics.

An important factor influencing the maximum efficacy 
of treatment with a combination of two drugs is the way 
they are administered. Pharmacokinetic properties 
of both antimicrobials should be taken into account 
to optimize the delivery method of bacteriocins in 
combination with antibiotics. For example, it should be 
noted that systemically applied lantibiotics are likely to 
be bound by plasma proteins [72], therefore, distribution 
and subsequent bioavailability of bacteriocins in the 
area of inflammation may be significantly weakened. 
At the same time, localized cutaneous, intravaginal or 
inhaled routes of bacteriocin administration may be 
more effective due to the relatively low absorption rates 
and minimization of undesirable systemic side effects 
[73–75].

Data have been accumulated, concerning the effect of 
bacteriocins combined with various antimicrobial agents 
against clinical isolates (pathogens). Studies show that 
different combinations of bacteriocins and antimicrobials 
exhibit synergism [76–78], antagonism [79] or no 
influence on the ultimate result (indifferent effect) [80]. 
To predict clinical efficacy of bacteriocin-antimicrobial 
combinations, it is necessary to understand physical 
and chemical character of interactions (hydrophobic-
hydrophobic or cationic-anionic interactions) between 
bacteriocin and antibiotic. Due attention should be 
paid to the molecular weight of components: perhaps a 
combination of two substances with the same molecular 
weight can be more efficacious than combining a high-
molecular substance with a low-molecular one [57].

When selecting an effective combination of 
bacteriocin and antibiotic, it should be understood 
that the mechanism of antimicrobial action can be 
changed and clinical outcomes may appear difficult 
to predict when combining two antimicrobials. In this 
regard, finding successful synergistic interactions 
using genomic, proteomic and other modern research 
methods is likely to boost introduction of antimicrobial 
combinations in clinical practice, generally contributing 
to the development of alternative therapeutic options 
and solution of the global problem of antibiotic resistance 
[57, 81–84].

It should be noted that bacteria present in a biofilm 
are more resistant to antimicrobials than those 
present in a planktonic state. Biofilms are known to be 
composed of bacteria incorporated into the complex 
organic polymeric matrix impeding penetration of the 
antimicrobial into the deepest strata [85–87]. Thus, 
there is increased importance of seeking alternative 
therapeutic options and/or effective antimicrobial 
combinations to target microbial biofilm communities. 
Researchers have revealed an increase in anti-biofilm 
activity of enterococcal bacteriocins in combination 
with a number of antimicrobial drugs against Methicillin 
Resistant Staphylococcus Aureus (MRSA) [76, 88–91].

A potential strategy of abandoning traditional 
antibiotics may also involve combining bacteriocins with 
phages and/or endolysins. For example, a number of 

Bacteriocins of Microbiota and Antibiotic Therapy
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researchers found a synergistic effect resulting from the 
combined application of these substances [92–98].

Thus, considerable information about the positive 
effect of combined application of bacteriocins with 
antimicrobial drugs is available at present. This suggests 
that the use of bacteriocins for treatment against 
antibiotic-resistant strains has real prospects [99].

Recent methods of bacteriocin production
Today, bacteriocins are most often produced by 

selection of producer bacteria or by chemical synthesis.
The main stages of the biological pathway (selection) 

are: isolation of cultures from natural sources, 
comparative assessment of producer activity and 
selection of the most promising producers, experimental 
enhancement of producer activity, including classical 
methods of mutagenesis and genetic engineering 
techniques [49, 100, 101]. However, large-scale 
commercial introduction of this method to produce 
bacteriocins may be limited by low output (if several 
purification methods are used) or low purity (with a 
higher output), which affects the cost or quality of the 
product.

Current development of peptide synthesis methods 
allows obtaining bacteriocins chemically [102]. 
Chemical synthesis is generally more appropriate and 
efficient in production of low molecular weight peptides 
(<6 kDa). Streamlined synthesis aims at obtaining 
various modifications of known bacteriocins with 
improved properties as well as creating new drugs with 
desired properties. The chemical method offers many 
advantages such as the possibility of quick amino acid 
replacement, the use of modifications of the main or 
lateral chains in the molecule, which is likely to improve 
efficacy and stability giving the opportunity to change 
bacteriocin activity spectra. Besides, steady decline 
in the cost of reagents for synthesis also makes the 
chemical method more attractive and competitive [102].

Conclusion
In view of the increasing number of antibiotic-

resistant strains among pathogenic and opportunistic 
microorganisms, the study of bacteriocins as alternative 
antimicrobial substances is quite timely. Non-toxicity, 
biological safety and the possibility to combine 
bacteriocins with other antimicrobial agents (antibiotics, 
bacteriophages, etc.) offer the challenge of using 
them as mono- or combined drugs for antimicrobial 
therapy. Given the huge potential of bacteriocins and 
increasing demand for them, it is extremely timely to 
develop methods of selection and subsequent chemical 
synthesis.

Representatives of the normal human microbiota 
are among the safest sources of bacteriocins. These 
peptides are involved in the mechanisms of antagonistic 
activity within the microbiome to maintain it in a state 

of dynamic equilibrium. The capacity to produce 
bacteriocins is an important characteristic of probiotic 
strains, should be considered when creating probiotics 
for correction of dysbiotic conditions.
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