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The current increase in the number of publications on the use of artificial intelligence (AI) technologies in neurosurgery indicates a new 
trend in clinical neuroscience.

The aim of the study was to conduct a systematic literature review to highlight the main directions and trends in the use of AI in 
neurosurgery. 

Methods. Using the PubMed search engine, 327 original journal articles published from 1996 to July 2019 and related to the use of 
AI technologies in neurosurgery, were selected. The typical issues addressed by using AI were identified for each area of neurosurgery.

Results. The typical AI applications within each of the five main areas of neurosurgery (neuro-oncology, functional, vascular, spinal 
neurosurgery, and traumatic brain injury) were defined.

Conclusion. The article highlights the main areas and trends in the up-to-date AI research in neurosurgery, which might be helpful in 
planning new scientific projects. 
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Artificial Intelligence Technologies in Neurosurgery

Introduction

In the first part of this systematic review (see 
Sovremennye tehnologii v medicine 2020; 12(5): 106), 
using topic modeling, we determined the main topics 
featured in publications on artificial intelligence (AI) in 
five important fields of neurosurgery: neuro-oncology, 
functional, vascular, spinal neurosurgery, and traumatic 
brain injury. The second part of the review presented 
here discusses the main issues addressed by the 
authors to test and evaluate AI methods.

Methods
The review was conducted using PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-
Analyzes) guidelines [1]. 

The analysis covered journal articles and international 
conference proceedings that met the following criteria:

the publication was an original research article;
the publication referred to a disease and/or a 

treatment directly related to neurosurgery;
the authors analyzed the use of AI technology for 

solving clinical problems of diagnosis, treatment, 
prognosis, rehabilitation, or prevention of a nervous 
system disorder;

neurosurgery was a potential or actual field of 
application for the AI technology analyzed in the study.

The literature search for this systematic review 
was performed with PubMed US National Library of 
Medicine search engine system (https://www.ncbi.nlm.
nih.gov/pubmed/). The search query was phrased to 
find all documents, in which the terms “neurosurgery” 
or “neurosurgical procedures” were coupled with terms 
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related to specific AI technologies (including big data 
analysis and machine learning) in all database fields. 
The exact and complete query in the PubMed search 
engine is given below: 

(“neurosurgical procedures”[MeSH Terms] OR 
(“neurosurgical”[All Fields] AND “procedures”[All 
Fields]) OR “neurosurgical procedures”[All Fields] OR 
“neurosurgery”[All Fields] OR “neurosurgery”[MeSH 
Terms]) AND (“artificial intelligence”[All Fields] OR 
“machine learning”[All Fields] OR “natural language 
processing”[All Fields] OR NLP[All Fields] OR “text 
mining”[All Fields] OR “fuzzy logic”[All Fields] OR “data 
mining”[All Fields] OR “big data”[All Fields] OR “topic 
model”[All Fields]).

The search results from PubMed were reviewed to 
select original articles that met the inclusion criteria in this 
systematic review. The selected articles were classified 
according to the relevant fields of neurosurgery. The 
topics in these studies were preliminary outlined by 
experts and their number was counted. The selection 
process and the technical tools used in this systematic 
review have been detailed in Part I.

Results
In accordance with the inclusion criteria, 327 papers 

published between 1996 and July 2019 were selected. 
A complete list of the 327 publications is presented in 
the Appendix. Below, we analyze the application of AI 
technologies in each field of neurosurgery in more detail; 
typical publications illustrating the study objectives are 
shown in brackets.

Application of artificial intelligence in neuro-
oncology (133 publications). Approximately 41% 
of the selected studies provide examples of using AI 
technologies in neuro-oncology (see Appendix). Most of 
data for these works were obtained from medical images 
(magnetic resonance imaging, computed tomography, 
positron emission tomography, ultrasound diagnostics, 
optical coherence tomography, or confocal laser 
microscopy) as well as from genomic sequencing and 
histology. 

The main tasks in neurosurgical oncology attempted 
to be solved using AI technologies were:

segmentation and volumetry of brain structures [2, 3];
noninvasive tissue and molecular genetic differential 

diagnosis [4–7];
predicting complications and treatment outcomes [8, 9].
One of the unconventional AI applications in neuro-

oncology was the analysis of research trends in neuro-
oncology based on scientific publications. An interesting 
task to be solved was concerned with the brain shift 
during neurosurgery. The solution to this problem is 
of great importance for the developing technologies of 
intraoperative neuro-navigation. 

Application of artificial intelligence in functional 
neurosurgery (62 publications). Approximately 19% 
of articles on the use of AI in neurosurgery address 

the issues of functional neurosurgery, including 
epilepsy surgery (see Appendix). The data in these 
studies were obtained from electroencephalography 
and electrocorticography, magnetoencephalography, 
medical imaging (magnetic resonance imaging, 
including functional imaging and resting state, positron 
emission tomography, single-photon emission computed 
tomography), as well as deep brain stimulation, video 
monitoring of patient’s condition, medical records, 
biochemical and genetic analyses, wearable devices. 

Among the typical tasks approached by researchers 
in these studies, there were:

diagnosis of epilepsy, ictal and interictal activity, 
seizure predictors [10–12];

functional tractography [13];
search for epileptogenesis biomarkers [14];
patient selection for epilepsy surgery [15];
predicting outcomes of epilepsy treatment [16];
Parkinson’s disease diagnostics [17];
study of functional compensatory mechanisms in 

patients with Parkinson’s disease [18];
study of movement disorders in Parkinson’s disease 

[19];
electrophysiological identification of postural tremor 

and voluntary movements with essential tremor [20];
detection of targets, planning and modulating of deep 

brain stimulation [21];
prediction of postoperative side effects [22];
predicting the outcomes of microvascular 

decompression in hemifacial spasm [23];
search for electrophysiological correlates of 

neuropathic pain [24];
diagnosis of neuropsychiatric disorders [25];
research of episodic and semantic memory 

mechanisms [26];
speech-based identification of hemisphere dominance 

[27]; 
detection of the epileptogenic focus and segmentation 

of brain structures [28].
This section of neurosurgery is characterized by 

a greater variety of research tasks as compared with 
neuro-oncology. Predominantly, attention was paid 
to epilepsy and movement disorders. The principal 
source of data was the electrical activity of the brain 
as recorded not only from the scalp, but also from the 
cortex and deep brain structures including specific 
neural ensembles. Using intracranial microelectrodes, 
researchers were able to directly measure the electrical 
activity in the brain and then analyze that in studies on 
memory and speech.

Application of artificial intelligence in vascular 
neurosurgery (44 papers). Research in vascular 
neurosurgery accounted for 14% of the entire pool 
of retrieved publications on AI in neurosurgery (see 
Appendix). Most of the data were retrieved from medical 
images (computed tomography, including angiography, 
magnetic resonance imaging, digital subtraction 
angiography, and X-ray images) followed by the data 
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from medical information systems, bedside monitor 
recordings, electroencephalography, stereolithography, 
blood tests, and social/demographic questionnaires. 
A non-typical source of data in this field was a study on 
environmental pollution.

The key tasks of the above studies were:
identification of patients with aneurysms [29];
diagnosis of unruptured aneurysms [30];
risk factors and risk assessment for aneurysm rupture 

(including small ones) and spontaneous intracranial 
hemorrhage [31];

risk assessment for cardiac disorders after aneurysmal 
subarachnoid hemorrhage [32];

predicting outcomes of ruptured aneurysms [33];
predicting ischemia after aneurysmal subarachnoid 

hemorrhage [34];
grading the severity of intracranial vascular stenosis 

[35];
diagnosis of atherosclerotic plaques [36];
predicting a persistent decrease in blood pressure 

after carotid stenting and angioplasty [37];
risk assessment for stroke after carotid artery 

stenting [38];
predicting perfusion deficiency [39];
segmentation of blood vessels and arteriovenous 

malformations [40];
predicting adverse events and outcomes of treatments 

for arteriovenous malformations [41];
definition, classification, and segmentation of 

intracranial/intracerebral hemorrhage [42];
discovering the genesis of intracranial hematomas [43];
predicting an increasing volume of hypertensive 

intracerebral hematoma [44];
risk assessment for intracerebral hemorrhage [42];
predicting functional outcomes of intracerebral 

hemorrhage [45]; 
predicting consciousness impairment in hemorrhagic 

stroke [46].
Despite the substantially smaller number of 

publications as compared to neuro-oncology, the field 
of vascular neurosurgery earned a fairly wide range of 
AI applications. Most of these tasks can be summarized 
as (i) diagnosing pathological vascular formation and (ii) 
predicting complications and treatment outcomes.

Application of artificial intelligence in spinal 
neurosurgery (29 publications). The use of AI in 
the field of spinal neurosurgery was discussed in 8% 
of the publications (see Appendix). The main sources of 
data in this area were medical images (magnetic 
resonance imaging, computed tomography, X-ray scans, 
and ultrasound images), as well as the data obtained 
from limb motion sensors. Special data were derived from 
video recordings of the surgeon’s movements, as well as 
articles from the US National Library of Medicine. The 
main tasks addressed in this area of research included:

prediction of complications [47];
prediction of treatment outcomes [48];
hospital discharge options [49];

transformation of images into different modalities [50];
segmentation of bone tissue and the spine [51];
grouping of patients and interventions for spinal 

deformation surgery [52];
assessing the motor function in patients with cervical 

spine disease and lumbar stenosis of the spinal canal 
[53, 54];

assessing the foot drop in lumbar radiculopathy [55];
visual diagnosis of low back pain [56];
predicting the long-term use of opioids after surgery 

[57]; 
predicting the development of osteoporosis [58].
The unusual research in this category included 

two studies on predicting changes in the intracranial 
pressure in patients during spinal surgery and predicting 
the surgeon’s actions during the intervention [59, 60].

Application of artificial intelligence in the field 
of traumatic brain injury (26 publications). In 8% 
of the selected studies, AI was used for issues of 
neuro-traumatology (see Appendix). The reported 
data were extracted from medical images (computed 
tomography, magnetic resonance imaging, and 
terahertz neuroimaging), electroencephalography, 
patient monitoring devices (including intracranial 
pressure sensors), clinical examinations, eye movement 
recordings, and genetic studies.

With a relatively small pool of AI-associated articles, 
traumatic brain injury is an area with multiple data 
sources and quite a few challenging problems related to 
prognosis. The main objectives of the analyzed studies 
were:

assessing the severity of traumatic brain injury [61];
diagnosis of impaired consciousness [62];
quantitative assessment of intracerebral changes [63];
search for biomarkers of traumatic brain injury [64];
prediction of secondary injuries, classification of 

adverse events and complications [65];
predicting outcomes, searching for prognostic 

factors [66];
evaluating autoregulation of cerebral blood flow [67]; 
noninvasive assessment of intracranial pressure [68].
Other publications (various and mixed topics). 

About 10% of the studies on AI application in 
neurosurgery were concerned with general issues 
relevant to a number of neurosurgical conditions or 
non-specific for any disease. In these studies, medical 
imaging data, electrophysiological data, and other 
sources described above were used. For example, an 
analysis of infectious complications in patients in the 
neuro-intensive care unit.

Non-standard sources of data in this area included 
photographs of patients’ faces, information from 
smartphone (to monitor neurological status), and texts of 
scientific publications.

Artificial intelligence technologies used in 
the research. In the above studies, both traditional 
approaches to classification and prediction (regression 
models, support vector machines, decision trees, 
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and the Naive Bayes classifier) and the most recent 
methods (artificial neural networks and natural language 
processing) were used. Thus, almost the entire spectrum 
of modern AI technologies was involved in these studies.

Discussion
According to our literature review, the majority of data 

concerning the use of AI technologies in neurosurgery 
come from neuroimaging, genome sequencing, invasive 
and non-invasive biosensors, and medical information 
systems (including unstructured data). Along with that, 
much less attention has been paid to the AI-based 
analysis of medical texts (scientific literature and medical 
records related to neurosurgery).

Current technologies of text analysis allow one 
to explore the content of medical records, highlight 
relevant information, and test scientific hypotheses. AI 
technologies can not only extract data from medical 
texts but also create diagnostic and predictive models 
based on this data [69]. An archive of electronic medical 
records accumulated over a long time can provide 
the basic material for this type of analysis. These 
records are currently used (with certain limitations) in 
retrospective studies, but their informational value is 
yet to be uncovered [70]. One example is the prediction 
of nosocomial infections following neurosurgery using 
Natural language processing (NLP) [71, 72]. Cohen 
et al. [15] showed that NLP and machine learning 
methods could help select candidates for surgical 
treatment of epilepsy and reduce the time needed to 
make the decision on this treatment. Generalization of 
risk factors for neurosurgical diseases and prediction 
of their clinical course by analyzing medical texts are 
rarely reported.

Importantly, electronic medical libraries represent an 
invaluable source of “big” data for research tasks. Today, 
generalization and critical assessment of research 
results using the criteria of evidence-based medicine 
are carried out by experts who write systematic reviews 
and meta-analyses [73]. As a rule, such generalization 
studies are labor- and time-consuming challenges; 
they may provide the most substantiated answers but 
to a very narrow range of questions. At the same time, 
the scientific literature of less “high quality” (from the 
standpoint of evidence-based medicine) contains a large 
amount of information that is not critically assessed 
by traditional evidence-based medicine methods. In 
surgery, including neurosurgery, the number of studies 
with a high level of evidence is significantly smaller than 
that in internal medicine [73, 74]. Therefore, analytical 
tools able to avoid the limitations of systematic reviews 
and make the most of information from thousands 
of published reports are of particular importance in 
neurosurgery. In recent years, works have appeared 
in which the literature on neurosurgery is analyzed and 
summarized using AI [75–77]. Such technologies (topic 
modeling) are used in this review.

Today, a common limitation of AI-assisted research 
in neurosurgery is a relatively small sample size (tens, 
hundreds, rarely thousands of observations) compared 
to the “big data” that has been processed by machine 
learning in other branches of science and industry. This 
data insufficiency calls into question the scalability of 
AI-powered solutions, even though it performs well in 
isolated studies. That is why research projects using AI 
technologies are beneficial and productive for medical 
research organizers who own the resource of big data.

In our opinion, when planning research using AI 
technologies, it is important to adhere to the principles 
of evidence-based medicine, which ensure the 
scientific validity of the obtained results and, therefore, 
increase their benefit to patients. Research planning 
and the choice of methodology are of fundamental 
importance and should be adequate to achieve the study 
objective while minimizing potential biases. In addition, 
technologies for analyzing large amounts of data can, 
to a certain extent, compensate for the methodological 
limitations of research in neurosurgery (for example, the 
inability of using randomization and double masking).

Purpose and perspectives of artificial intelligence 
in neurosurgery. With a wide range of tasks 
demonstrated in this review, the application of the AI 
technologies can be reduced to two major areas — 
research and clinical practice. 

In research, the AI potential involves its ability to 
extract a lot of useful information and knowledge by 
making this extraction most efficient and by reducing 
the time of investigation. This approach overcomes the 
limitations of traditional mathematical statistics, which 
test hypotheses using much fewer data.

In clinical practice, AI can be instrumental in solving 
tasks of medical activities automation, i.e. accelerating, 
simplifying, and increasing the reliability of diagnosing 
diseases, making clinical decisions, and predicting 
possible complications and outcomes of medical 
interventions. Thus, AI is expected to bring an economic 
effect by reducing human labor costs and the time for 
decision-making in medicine.

A good understanding of the AI technologies 
perspectives justifies the efforts to develop and test 
these methods in research and clinical medicine.

Interpretation of the term “artificial intelligence” 
in the context of medical issues. The term “artificial 
intelligence” can be intuitively (but at present, 
erroneously) understood as “a machine capable of 
thinking”, and in the context of medicine — literally “a 
robotic doctor”. Neuroscience has not yet reached the 
understanding of human intelligence, and AI technologies 
have not come close to creating an “artificial brain”. At 
present, the methods united by the concept of “artificial 
intelligence”, solve rather traditional and pragmatic tasks, 
but using entirely novel technologies. Calculations based 
on AI methods, like the results of traditional statistical 
analysis, are interpreted by a medical doctor. Despite 
the similarity between the principles of mathematical 
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algorithms and human intellectual activity, the AI 
methods cannot yet imitate consciousness, conscience, 
reflection, and other abilities of the human mind, which 
allow the doctor to make informed and responsible 
decisions. Like robotic navigation systems, microscopes, 
and linear accelerators, AI technologies are new tools 
in the doctor’s arsenal. Today, they have the potential 
to become routine, but, for now, they cannot replace a 
clinician.

Study limitations. This work includes a large number 
of publications reflecting major trends in using AI in 
neurosurgery without addressing the issues of efficacy, 
safety, or economic feasibility of specific technologies 
under specific conditions. Thus, the authors limit their 
scope to stating the facts of using AI methods in various 
tasks without assessing the quality of these studies. 

Conclusion
To date, research using artificial intelligence 

technologies has been carried out mainly in five major 
areas of neurosurgery: neuro-oncology, functional, 
vascular, and spinal neurosurgery, and the area of 
traumatic brain injury. The main sources of data in 
these studies were neuroimaging, genome sequencing, 
biosensors, and medical records. The use of artificial 
intelligence is becoming a global scientific trend in 
neurosurgery, therefore, an assessment of their efficacy, 
safety, and applicability in the clinic is highly important.
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