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One of the most promising areas of diagnosis and prognosis of diseases is radiomics, a science combining radiology, mathematical 
modeling, and deep machine learning. The main concept of radiomics is image biomarkers (IBMs), the parameters characterizing various 
pathological changes and calculated based on the analysis of digital image texture. IBMs are used for quantitative assessment of digital 
imaging results (CT, MRI, ultrasound, PET). The use of IBMs in the form of “virtual biopsy” is of particular relevance in oncology.

The article provides the basic concepts of radiomics identifying the main stages of obtaining IBMs: data collection and preprocessing, 
tumor segmentation, data detection and extraction, modeling, statistical processing, and data validation. The authors have analyzed the 
possibilities of using IBMs in oncology, describing the currently known features and advantages of using radiomics and image texture 
analysis in the diagnosis and prognosis of cancer. The limitations and problems associated with the use of radiomics data are considered. 

Although the novel effective tool for performing virtual biopsy of human tissue is at the development stage, quite a few projects have 
already been implemented, and medical software packages for radiomics analysis of digital images have been created. 
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Introduction

Early diagnosis of malignant tumors determines the 
success of treatment and improves the prognosis of 
the disease. Various medical imaging modalities are 
used for this purpose: ultrasound, X-ray computed and 
magnetic resonance imaging (CT and MRI), positron 
emission tomography (PET), single-photon emission 
computed tomography (SPECT), as well as hybrid 
methods — PET/CT, PET/SPECT, PET/MRI. Digital 
images of the tumor obtained with their aid reflect its 
anatomical and functional changes. However, most of 
these data are largely nonspecific and insufficiently 
informative [1–3].

Radiomics, a new direction for in-depth digital image 
analysis, has been rapidly developing in recent years [4]. 
The annual increase in the number of published papers 
on this subject has been 177.8% (p<0.001) [5].

The concept of radiomics was first proposed in 2012 
[6]. This science involves high-throughput extraction, 

analysis, and interpretation of quantitative features from 
medical images [5–7]. Texture analysis of images is 
part of radiomics and provides an objective quantitative 
assessment of tumor heterogeneity by distributing 
and interconnecting the levels of pixels or grayscale 
voxels in an image [8, 9]. Given the non-invasiveness 
of the radiomic method, texture analysis of images can 
be presented as a “virtual biopsy” [10]. The goal of 
radiomics and texture analysis is to build a standardized 
prognostic model to determine clinical outcomes with 
selected features. The main diagnostic task of radiomics 
in oncology is accurate differentiation between benign 
and malignant tumors using non-invasive diagnostic 
methods [11–13].

The aim of this review is to analyze papers devoted 
to the features of radiomics, which are currently being 
developed or already used in clinical practice, and 
textural analysis of medical images, making it possible to 
carry out non-invasive diagnosis of various oncological 
diseases.
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Literature search method

A systematic literature search was carried out in the 
PubMed database using the search line “Radiomics” 
[All Fields] AND “digital image texture analysis” [All 
Fields] and eLibrary — “radiomics” and “digital image 
texture analysis”. The search interval was 2016–2020. 
All published works devoted to the use of radiomics and 
digital image texture analysis in medicine and oncology 
were studied.

Basic terms of radiomics

Radiomics is a hybrid analytical process aimed at 
determining the correlation between the characteristics 
of a digital image of tissues (including tumor tissues) 
and involves the following steps: data collection and 
preprocessing, tumor segmentation, data detection 
and extraction, modeling, statistical processing, and data 
validation [14, 15].

The radiomics workflow begins with image acquisition. 
Then the study region (a given region of interest) is 
processed using special software. Furthermore, certain 
parameters (functions, indicators) — image biomarkers 
(IBMs) — are selected in the processed statistical model. 
Work on images includes various stages of preliminary 
and subsequent processing [16–18].

In the statistical model, the first step is to estimate 
the frequency distribution of the gray level based on a 
histogram of pixel intensity in the given region of interest, 
including the average intensity, threshold (percentage 
of pixels in the specified range), entropy (randomness), 
standard deviation, skewness, and kurtosis (peak/
flatness of the histograms of pixels). Second-order 
statistics involves such parameters as second-order 
entropy, energy, homogeneity, difference, and correlation.

Higher-order statistics — contrast, “coarseness”, 
and “occupancy” — can be calculated using grayscale 
difference matrices that study the location and 
relationship between three or more pixels/voxels. The 
statistical model is also checked [19]. Data collection 
relies on a large number of medical images and related 
clinical data to reveal the existing correlation between 
them [17, 18].

The details of obtaining IBMs for radiomics analysis 
are described in numerous studies of the effectiveness 
of digital imaging: CT [20–23], PET [24–27], MRI 
[28–30], ultrasound [31–33]. Although the technical 
aspects of image preprocessing and filtering have been 
well developed to date [34–37], the efficacy of these 
functions in predicting the course of the disease is being 
intensively studied [38–42].

The software implementation of radiomics analysis 
of digital images is based on both commercial software 
solutions and open-source programs [43, 44]. These 
programs tend to generate a large number of texture 
features, many of which are common to all software, 
but not all studies use the same descriptors, making 

it difficult to compare the results. Besides, the same 
name of a texture feature can sometimes cover different 
calculation methods or different names of characteristics 
[45]. Today, there have been developed such commercial 
packages as RADIOMICS™ (OncoRadiomics, the 
Netherlands) and TexRAD™ (Feedback Medical Ltd., 
Great Britain) [45]. There are also non-commercial 
open-source software platforms — LIFEx [43], IBEX 
(Imaging Biomarker Explorer) [44], Pyradiomics [46]. 
The most interesting is the IBEX tool, which evaluates 
five main indicators: the gray level co-occurrence matrix, 
the gray-level run-length matrix, the neighborhood 
intensity difference matrix, histogram, and shape [44, 47, 
48]. Work is underway to standardize IBMs, which will 
create the standardized terminology of image processing 
workflow and provide guidelines for conducting research 
in the field of radiomics [49, 50].

Segmentation determines which region will be 
analyzed (region of interest — ROI) and includes 
manual, semi-automatic, and automatic methods. Manual 
segmentation is an important step in the radiomics 
workflow, as radiological features are extracted from 
segmented regions of interest [51]. Automatic or 
semi-automatic segmentation techniques are widely 
studied to minimize manual input and improve consistency 
in delineating regions of interest [52]. However, today 
there are no proven common standards for tumor 
segmentation and its implementation is time-consuming 
[51, 52]. There are many variations in morphological 
features since tumors are very different from geometric 
objects. Tumor margins can be “blurred” because they are 
unclearly defined in most medical images [53].

The essence of radiomics is creating mathematical 
models and algorithms that receive medical images 
at the input of computer analysis and give out the 
pathophysiological features of tissues as the output 
[54, 55]. To create such a model, it is necessary to 
go through several stages [56, 57]. The first stage 
(formulation of a clinical task) is identifying the tumor 
phenotype to select the optimal therapeutic approach, 
estimating the susceptibility to a particular drug, or 
predicting the likelihood of side effects from therapy. 
The second stage is collecting a database of medical 
images relevant to the task at hand. The third stage is 
data markup [58, 34]. Then, for each selected region of 
all selected images, IBMs are calculated. The following 
IBMs are distinguished:

shape features: volume, maximum linear size, area, 
compactness, and sphericity, the interrelationship 
between these characteristics;

first-order features (histogram features describe the 
statistical properties of pixels in the selected region of 
the image): the maximum, minimum, mean, and median 
values of the intensity in the selected region, standard 
deviation from the mean, skewness of the distribution;

second-order features: textural features of the 
correlation of neighboring pixel values and the 
homogeneity of the selected region [58].
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Higher-order features describe the statistical 
characteristics of images obtained from the original ones 
by applying various mathematical methods: Fourier 
transform, wavelet analysis, as well as various filters [34].

Image biomarkers obtained by machine learning 
methods are selected by algorithms automatically. The 
most popular algorithms in radiomics are regression, 
various types of decision trees, and neural networks 
[59–61]. The most informative IBMs are selected from 
the entire set of calculated features using mathematical 
statistics [62, 63]. Removing the uninformative features 
makes the prediction results more stable and prevents 
random “noise” in the data from influencing the decision. 
A mathematical model is built (trained) based on 
the obtained features, which predicts the necessary 
features — tumor phenotype, susceptibility to the 
chosen treatment modality, the likelihood of side effects, 
etc. [64, 65].

The use of radiomics in clinical practice
Radiomics lies at the intersection of radiology, 

computer science, and mathematical statistics. Medical 
images contain information inaccessible to the naked eye. 
This hidden information can be extracted by applying a 
series of mathematical transformations to the resulting 
images. The results of these transformations can correlate 
with pathophysiological properties invisible in the images. 
Knowledge of the pathophysiological properties makes 
it possible to get a better understanding of the disease 
details in each specific case and to choose the optimal 
treatment modality [66, 67]. Radiomics is the most 
promising for the diagnosis and treatment of cancer. For 
example, its methods make it possible to determine the 
phenotype of a malignant tumor without resorting to 
the invasive procedure of biopsy and to select drugs 
with the highest efficacy [68]. In fact, radiomics can reveal 
the microscopic parameters of the investigated tissues 
from macroscopic images of the investigated object [67].

Providing a more accurate non-invasive diagnosis, 
radiomics analysis has come into use as a way to predict 
the overall survival of cancer patients. Wang et al. [69] 
investigated the informativeness of radiomics based 
on the analysis of 411 CT scans of patients with locally 
advanced rectal cancer who received neoadjuvant 
chemotherapy followed by surgery. The authors 
determined the values of radiomics features that allow 
dividing patients into low-risk and high-risk survival 
groups. Bae et al. [70] studied the role of the method 
in improving survival prognosis in patients diagnosed 
with glioblastoma multiforme. They extracted IBMs 
from 217 multivariate MRI scans and identified 18 of 
the most informative radiomics characteristics that 
can significantly improve patient stratification when 
considered in addition to clinical and genetic profiles. 
Oikonomou et al. [71] studied IBMs from 150 PET/CT 
scans of patients receiving stereotactic radiation therapy 
for lung cancer. They constructed signatures using 10 

functions and found radiomics analysis to be a good 
predictor of overall survival. Kirienko et al. [72] extracted 
IBMs from PET, CT, and combined PET/CT images of 
patients with non-small cell lung cancer after surgery 
(n=295) and developed radiomics signatures predicting 
relapse-free survival in this category of patients.

There have been studied the possibilities of radiomics 
in non-invasive differentiation of histological subtypes 
of non-small cell lung cancer. For example, Wu et al. 
[73] extracted IBMs from 350 CT scans of patients with 
adenocarcinoma and squamous cell lung cancer, whose 
tumor histology was determined on surgical specimens. 
The authors developed a signature of five radiomics 
features with fairly good diagnostic characteristics — 
AUC=0.72.

Filatau et al. [74] used the capabilities of CT imaging 
biomarkers for the differential diagnosis of chronic 
pancreatitis and pancreatic cancer. According to the 
authors, the overall accuracy of differential diagnosis 
(the accuracy of the method) was 0.92.

Wu et al. [75] obtained IBMs from 170 MRI scans of 
patients with hepatocellular carcinoma. The histological 
characteristics of the tumors were established using 
remote surgical specimens. The signature of radiomics 
only (AUC=0.74) outperformed the clinical model 
(AUC=0.60), while their combination significantly 
improved the prediction of the grade of hepatocellular 
carcinoma — AUC=0.80. Vallèries et al. [76] achieved 
a sensitivity of 0.96 and a specificity of 0.93 in the 
diagnosis of metastatic lung lesions using models with 
combined IBMs based on PET and MRI.

The effectiveness of IBMs has been confirmed for 
predicting the immune response to therapy in oncological 
diseases. A radiomics signature has been developed 
that predicts the response to immunotherapy in patients 
with advanced melanoma and patients with non-small 
cell lung cancer (AUC=0.76) [77]. The role of IBMs was 
studied in assessing the complete clinical response after 
neoadjuvant chemoradiation therapy in patients with 
locally advanced rectal cancer. The IBMs obtained from 
114 MRI images produced a radiomics signature with a 
sensitivity of 1.0 and a specificity of 0.91 that surpassed 
the qualitative assessment of the analysis performed by 
two radiologists [78].

Automatic segmentation of target structures can be 
performed using radiomics tools [79]. Jiang et al. [80] 
developed a model of three-dimensional segmentation 
of a lung tumor on CT images. It was trained using 
examination results of 377 patients from an open-access 
dataset available from The Cancer Imaging Archive 
(https://www.cancerimagingarchive.net). For validation, 
two independent datasets were used, consisting of 
examination results in 304 and 529 patients with lung 
tumors. Interestingly, there was no significant difference 
between the mask generated by their model and the 
manual segmentation by the experts.

Manual segmentation of brain glioblastoma in MRI 
is a very time-consuming process. An automated 
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model for brain tumor segmentation developed by 
Yi et al. [81] based on 274 MRI images extracted from 
an open-access dataset [82] can greatly facilitate the 
process. The model accuracy is 0.89.

Chen et al. [83] proposed a model capable of 
detecting and segmenting cervical tumors using PET 
imaging; its accuracy is 0.84.

Besides, IBMs can be used for tumor classification 
tasks. Ardila et al. [84] studied the possibility of predicting 
the risk of lung cancer by means of screening low-dose 
CT. The authors trained their model on 7000 images 
and tested its effectiveness on 1139 cases (AUC=0.94). 
Interestingly, the predictions made by the model were 
more accurate than those of radiologists (n=6). This 
contributed to a significant reduction in the number of 
false positive (11%) and false negative (5%) results.

Abdelaziz Ismael et al. [85] investigated the possibility 
of using radiomics algorithms for differential diagnosis 
of various brain tumors. The authors developed an 
algorithm based on 3064 MRI images from 233 patients. 
The classification accuracy was 0.99 (based on MRI 
data only) and 0.97 (on clinical testing). Sibille et al. [86] 
used a combination of CT  +  PET to differentiate lung 
masses in 629 patients with cancer or lymphoma. The 
algorithm developed by the authors demonstrated high 
accuracy (AUC=0.98).

Radiomics features have also been studied to assess 
the response to cancer therapy. The potential of IBMs 
for predicting the response to radiation therapy in 
patients with lung cancer (primary or metastatic) has 
been reported with an accuracy of 0.72 [87]. There was 
proposed an algorithm that achieved a sensitivity of 0.81 
and a specificity of 0.82 in predicting the response to 
neoadjuvant chemotherapy in patients with esophageal 
cancer based on PET scanning [88].

Image biomarkers are good diagnostic and prognostic 
tools in oncology, capable of improving the prognosis 
of distant metastases [89], pathological response 
to treatment [90], local recurrence [91], sensitivity to 
chemoradiotherapy [92], relapse-free survival [93], 
radiation pneumonitis, etc. [94].

However, despite the first encouraging results, there 
are limitations to the use of radiomics and digital image 
texture analysis in oncology and medicine in general. 
The main limitation of the wide use of radiomics is the 
fact that the type of tissue texture analysis performed, 
the type of segmentation used, post-processing 
methods, and the quantity and quality of texture object 
output vary widely across platforms and studies, making 
comparison of results difficult. At the moment, there are 
no unified standards for measuring radiomics parameters 
and tissue texture. Despite statistically significant results, 
there is a wide variation in the published data [5].

The next major problem with radiomics is the 
enormous amount of data obtained from texture analysis 
of medical images. Moreover, the study of several 
features on the same dataset can lead to a significant 
probability of error and generation of false results [95]. 

When analyzing a large number of IBMs, the values 
must be adjusted to test multiple hypotheses [96, 97]. 
In addition to the above-mentioned factors, there are 
other limitations, such as metallic artifacts in CT images 
[98], the peak voltage and current of the CT X-ray tube 
[99], and others that also might affect the quantitative 
assessment of radiomics features.

Taking into account the influence of various imaging 
parameters, researchers should pay more attention 
to standardizing imaging protocols and provide the 
necessary parameters to achieve reproducibility and 
comparability with other radiometric studies [100].

Conclusion
Radiomics and tissue texture analysis in digital 

imaging is a new area of medical research that allows 
non-invasive virtual biopsy of human tissue. Particularly 
relevant is the modern quantitative analysis of tissue 
characteristics using image biomarkers in oncology, 
which allows improving the results of diagnosis, 
differentiation of tumors, as well as making decisions on 
treatment strategy and predicting outcomes. Advances 
in data mining and machine learning make it possible 
to extract many quantitative features and transform 
the fast-growing number of medical images into data 
required by clinical oncologists.
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