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Using mathematic criteria for image processing (radiomics) makes it possible to more accurately assess the nature of therapy-associated 
changes and determine the sites of maximal response. Comparison of the acquired quantitative and clinical data may assist radiologists in 
making the optimal decision.

The aim of the study was to assess the capabilities of software operators for an in-depth analysis of metastatic spine lesion images 
in breast cancer.

Materials and Methods. MRI data of three patients with breast cancer T2N2–3M1 receiving treatment in accordance with the accepted 
clinical protocols were used in our work. Spinal metastases were assessed by a radiologist and machine analysis using the Arzela variation 
operators. Twelve MRI examinations (4 per each patient) excluding the baseline examination have been analyzed with a follow-up period 
of about 3 months. 

Results. The structure of the metastatically modified spine was analysed segment by segment in the sagittal and axial projections 
using machine image analysis operators. Rapid changes in the “complexity” of vertebrae images have been found, allowing one to suggest 
the efficacy of treatment in one of the three options — stabilization, improvement, progression. Changes in the vertebrae structure with a 
positive response to the treatment in the form of the formation of bone objects, calderas, reduction of the contrast agent circulation at the 
microlevel, confirmed by mathematical analysis, have been monitored. A correlation was obtained between the established changes and 
the level of the CA 15-3 cancer marker.

Conclusion. The study has shown a high effectiveness of machine image analysis algorithms, high correlation of the obtained results 
with the radiologist’s report and clinical and laboratory data in 9 cases out of 12. The Pearson correlation coefficient between the classical 
marker and matrix filter curve was 0.8.
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Introduction

An important task of breast cancer management is 
the assessment of its efficacy, revealing reliable criteria 
of disease stabilization or progression as early as 
possible, which allows one to timely correct a treatment 
plan [1]. Application of radiomics and its principles 
opens wide possibilities for monitoring the disease using 
visualization techniques such as contrast-enhanced 
MRI, the advantage of which is minimal invasiveness 
[2, 3]. The diagnostic difficulty of these methods lies in 
the fact that the processes of pathologic osteolysis and 
reactive osteosclerosis at the microlevel are running in 

parallel giving a large variability of the results, especially 
in the process of treatment. The standard presentation 
of data does not answer the questions what the speed 
and depth of these changes are and where the maximal 
response to the therapy takes place. The results of 
radiological pattern interpretation depend directly on 
the radiologist’s experience and are a qualitative and 
semi-quantitative characteristic. The profound machine 
image processing using mathematical criteria will 
provide the possibility to obtain reliable quantitative data 
which may serve as a support in clinical decision-making 
[4]. Due to the sophisticated working process, the topic 
requires further exploration. 
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The aim of the study was to assess the capabilities 
of software operators for an in-depth analysis of 
metastatic spine lesion images in breast cancer.

Materials and Methods
Clinical description of patients. MRI data for three 

patients with breast cancer T2N2–3M1 who underwent a 
complex treatment including neoadjuvant chemotherapy, 
mastectomy, and adjuvant chemotherapy combined 
with external beam radiotherapy with total focal doses 
(TFD) up to 56 Gy. The diagnostic methods used 
(osteoscintigraphy, CT, and/or MRI) revealed metastatic 
lesions of the skeleton in all patients. Once the diagnosis 
has been established, MRI with intravenous gadolinium 
contrast enhancement was employed to further control 
the foci in the spine. The follow-up intervals were 
3 months during which 4 examinations were performed 
for each woman, i.e. maximum 12 examinations. The 
total number of MRI investigations was 15; 3 of them 
represented baseline images in each observation, the 
rest were used to assess the effect of therapy. 

Simulation of the radiomic process. The main 
principle of the study has been formulated: a theoretical 
substantiation of the occurring processes, their practical 
(physical) validation, and comparison with clinical data.

Thus, the working process included two main stages: 
assessment of the diagnostic images by a radiologist 
and using machine analysis. To objectivize the results, all 
data were anonymized, the observations were assigned 
conditional numbers Osteo-1, Osteo-2, Osteo-3 with an 
ordinal number of examination 
sequence where MRI-0 is the 
initial examination, while MRI-1, 
MRI-2, etc. are diagnostic 
investigations made in the course 
of therapy. Notable, that both 
assessment processes were 
performed in parallel, and finally, 
a report was generated in which 
a final diagnosis was evaluated 
according to a three-valued 
scale: improvement, stabilization, 
progression. The results obtained 
were assessed both by simple 
comparison and using the 
Pearson correlation coefficient.

Dicom Viewer system having 
advanced functions of analysis 
and result presentation was used 
for machine analysis. It uses the 
Java programming language 
which makes it independent 
from the operating system of the 
computer used.

The mathematic image 
analysis was bound to the three 
main microlevel elements and 

included the development of the following methods:
1) analysis of the pattern complexity, since the tumor 

growth and angiogenesis are chaotic and therefore are 
characterized by a lower complexity than an ordered 
structure of healthy tissues;

2) contrast analysis, since contrast accumulation 
decreases in successful treatment;

3) analysis of microfoci (calderas), since a positive 
therapeutic effect in the vertebrae induces sclerotic 
processes at the sites of cancer lesions.

Methods of image analysis. Technical analysis of 
MR images also consisted of several stages. A series 
of sagittal and axial MRI in the mode of T1- and T2-
weighted images (Т1-WI, Т2-WI axial, sag) with and 
without introduction of a contrast agent, with isolation 
of the vertebral body as an image segment under 
study. Automatization may be engaged in this process 
but its results are not yet sufficient despite the current 
technological advances [5], therefore, a manual 
segmentation was used in our work. Maps of change 
dynamics were built based on the MRI of the thoracic 
spine in the process of treatment (as the example, 
Figure 1). These maps have formed the basis for the 
three developed methods.

1. At the beginning of the image complexity analysis, 
some remarks should be made on the calculation 
of entropy. An information-theoretic approach to the 
assessment of image complexity as a message flow 
presented in a discrete form is often based on entropy 
computation. This variant suggests the independence of 
pixel values while an image of any cancer MRI pattern 

Sagittal projection Axial projection

Figure 1. MRI in the T1-WI mode with contrast enhancement of the segmented 
thoracic vertebrae Th5–Th8 with a 3-month interval
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has a strong pixel correlation. Therefore, the approaches 
used to assess the complexity of independent message 
flow as, for example, entropy, often appear to be 
insufficient [6]. 

For this reason, in order to assess the contours or 
bounds (complexity) of the images, all of them were 
transformed to the monochrome gray color and the 
employed software allowed us to analyze the texture 
and projections simultaneously [7]. There exist several 
operators to calculate the object contours [8], and the 
most frequently used operators such as Sobel, Prewitt, 
Scharr, Arzela were tested by us (Figure 2).

According to the preliminary analysis, Arzela operator 
has displayed the best results, as it is able to show well 
internal contours. Arzela variations (AV) are calculated 
according to the following formula for each projection:

l ( 1, ) ( , )l l ( , 1) ( , )lAV =
( , )

f i j f i j f i f f i j
f i j

     


 ,

where f(i + 1, j), f(i, j + 1), f(i, j) are gray intensity values 
for an indexed (i, j) pixel.

The assessment of image complexity is based on the 
fact that an image will be more complex than another 
image if the sum of the object bounds, composing it, is 
greater. Contrast-enhanced cancer images are less 
structured than the normal bone tissue due, in particular, 
to chaotic angiogenesis, as previously mentioned. 
It leads to the reduction of the contour bound length 
or to the smaller gradient sum, i.e. to the low image 
complexity. In other words, inflammation around the 
tumor increases the sum of contrast intensity gradients 
observed as angiogenesis in pathological conditions, 
for example, during wound healing, making a general 
image more complex and therefore showing the effect of 
therapy. Using Arzela operator we came to the conclusion 
that the greater AV and the higher image complexity, the 
closer it is to the normal tissue, be it even inflamed. AV 
give sufficiently good contours of the important details 
and may serve as a measure of complexity at least at 
the projections used and in the lesions seen on the spine 
images. The structural part (complexity) responds well 
to the transition from the disordered to the ordered state 
when the regions have average sizes from 0.5 to 2.0 cm. 
The susceptibility threshold is yet to be explored.

Since it is difficult to separate simultaneously a 
long-term contrast reception and fast changes in the 

axial plane at the beginning of therapy, we will enhance 
the effect of contrast accumulation with a weighing factor. 
In this way, we go to the system of weighted variations 
(WV): the intensity at the corresponding point f(i, j). WV 
show an integral response to the therapy, in our case 
the thoracic vertebrae Th5–Th8. At the initial phase, 
WV complexity is low but it grows sharply when active 
therapy is used. It is associated with the emergence of 
necrotic areas where the structure of the contrast agent 
accumulation is more complex than in the tumor region. 
The process transforms then to the stable phase, the 
complexity of which (in the direction of the normal tissue) 
is substantially higher than in the initial phase.

2. Automatization of contrast measurement. Automatic 
detection of high contrast areas (bright areas) was used. 
After several experiments, the following simple algorithm 
was obtained: extrapolation of segmentation objects 
(usually about 100×100 pixels) with a cubic spline up to 
the size of 250 pixels; calculation of the threshold values 
for the average image brightness, and finally, contouring 
using BinaryImageOps.contour function from the BoofCV 
library with subsequent calculation of the total intensity 
in the contours (Figure 3).

The area of contours (in pixels) is summed up in 
order to take into consideration the influence of intensity 
distribution within the contours.

Contact=ΣΣP(i, j),

where P(i, j) is the pixel value (0–255); i is the contour 
index; j is the number of pixels in the contour.

Initial image Sobel Prewitt Scharr Arzela

Figure 2. Various filters for isolation of contours on the image
On images: MRI T1-WI axial with contrast enhancement, upper section of the Th6 thoracic vertebra

Figure 3. Automatically isolated contours (BoofCV) for Th7 
thoracic vertebra on T1-WI sag with contrast enhancement
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As a result, a quantitative curve of the contrast agent 
reception has been obtained as a function of a prolonged 
time over the entire registered spine region.

3. Microfoci. When moving to the last stage, we 
proceeded from the previously performed pathological 
studies [9], which have established that objects with 
radial and spherical symmetry prevailed in breast 
cancer. Keeping this in mind, we were searching for the 
lesion objects with this symmetry on the MR images of 
the thoracic spine. At this stage, we faced the questions 
of differential diagnosis which require a large separate 
investigation. In our work, enostosis-like changes have 
been detected: they had the same annular shape but 
with greater homogeneity [10].

At the first stage of our work, a standard conclusion 
was formulated by a radiologist with the assessment of 
the ongoing visible processes. Moreover, the protocol 
was more detailed owing to the possibility to trace the 
changes over the long follow-up period using available 
means of image processing on the workstations such as 
magnification and comparison.

Figure 4 shows visible changes on MR images 
(contrast-enhanced T1-WI sag) occurring with time for 
thoracic vertebra Th6:

а) developed tumor: randomly located blood vessels 
superiorly and inferiorly with intensive accumulation of 
the contrast agent;

b) destruction of the tumor angiogenesis and 
inflammation: formation of caldera;

c) randomly located vessels are almost absent in the 
lesion, caldera is growing and structuring;

d) an “inflammatory rim” appears around caldera, its 
structuring continues;

e) the inflammatory rim is replaced with a “sclerotic” 
ring, the caldera’s bottom becomes more homogeneous, 
one more reception of the contrast agent takes place;

f) the caldera closes in the center, the rim is well-seen;
g) the caldera loses its shape and merges further with 

the general background;
h) further stabilization of the process occurs.
The same conditions are observed in other vertebrae. 

Several similar processes may run on one vertebral 
body and not always simultaneously.

In the course of the work, it was suggested to 
call “calderas” all obscure spherically and radially 
symmetrical objects (microfoci). Before identification 
of calderas, images were stretched up to the size of 

the internal standard (250×250) and then smoothing 
was performed. For detection, it was necessary to set 
a threshold which varied from 1 to 254. Then a mean 
weighted value was counted which was taken as a 
threshold where the weights are the values of caldera 
areas. About 20% of the image bounds which were 
beyond the vertebra surface were excluded from the 
calculations. An example of calderas identification by 
the system is presented in Figure 5. 

A quantitative value for the caldera was counted as a 
total caldera area on the examined part of the spine:

Caldera=ΣS(i),

where S(i) is the area of separate calderas. This value is 
expressed in percentage in relation to the examined part 
of the spine surface.

Results
On the first point, complexity assessment, calculations 

were done concurrently for separate vertebrae and for 
the group of vertebral bodies.

Having calculated the values of variations, let us 
consider the changes of AV on the axial projection 
using the seventh thoracic vertebra Th7 as an example 
(Figure 6).

It is seen how AV (complexity) grows not only on the 
initial region but asymptotically as a whole, moreover, 
some spread in values is quite possible due to the 
technical parameters of MRI. The first values show 
the most sensitive response to the therapy and may 

а b c d e f g h

Figure 4. Caldera development from angiogenesis to sclerosing; MRI T1-WI sag with contrast enhancement

Figure 5. Example of detecting elliptic calderas using 
BoofCV software package

In-Depth Machine Analysis of MR Images of Metastatic Spine Lesion 
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serve as an additional landmark for the correction of the 
treatment scheme.

To improve statistical results, various segments of 
several vertebrae have been analyzed concurrently, 
smoothing thereby statistical dispersion. The results of 
AV for a large volume including Th5–Th8 vertebrae are 
presented in Figure 7.

The curve behavior for a large volume of vertebrae is 
seen to be similar to that for separate vertebrae, which 
leads to the important conclusion: the increase of the 
reference values may be used for a rapid assessment of 
the therapy. Besides, asymptotic behavior (dotted line) 
may be employed for revealing the cumulative therapy 
effect in a long-term perspective. 

The result of AV calculation on the sagittal projection 
without a contrast agent (T1-WI sag and T2-WI sag) 
appeared to be somewhat unexpected. At the beginning 
of the study, the axial projection of the vertebral surfaces 
was supposed to be the most sensible, which was 
actually confirmed. However, the selectivity of the tumor 
was lower than in the sagittal projection. After verification 
of this theory, the results will be presented in our 
subsequent works.

When measuring the contrast on T1-WI sag with 
contrast enhancement, we got a quantitative curve of 
the contrast agent reception as a function of prolonged 
time over the entire registered region of the spine 
(Figure 8).
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Figure 6. Changes of Arzela variations for Th7 thoracic vertebra on T1-WI axial with contrast 
enhancement
Solid line — Arzela variations; dotted line — tendency to Arzela variation increase. Horizontal axis 
corresponds to the time from the start of observation

Figure 7. Changes of Arzela variations over time simultaneously for thoracic vertebrae Th5–
Th8 on T1-WI axial with contrast enhancement
Solid line — Arzela variations; dotted line — tendency to Arzela variation increase. Horizontal axis 
corresponds to the time from the start of observation
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Figure 8. Change in the contrast agent accumulation over time (horizontal time axis) on T1-WI 
sag with contrast enhancement
Solid line — filling with contrast, decrease is noted; dotted line — tendency to the decrease of contrast 
agent accumulation

The data on the contrast accumulation were checked 
in the axial projection using the same method and 
unchanged settings: the threshold values of the mean 
image intensity (gray value) (Figure 9).

Comparison of the curves in the axial and sagittal 
projections shows that they do not essentially change 
their local behavior although they preserve all global 
properties. Thus, we observe a drop in contrast 
accumulation up to some asymptotic value in our case. 
This analysis of contrast accumulation allows us to 
quantitatively evaluate long-term changes of the process 

activity in the tested zone (vertebral bodies) according to 
MRI data.

Microfoci. The final result of microfoci analysis, as 
mentioned above, is summing up all caldera values 
for all thoracic vertebrae. Figure 10 shows a diagram 
where maximum corresponds to spherically or radially 
symmetrical rim-forming objects and, what is most likely, 
with suppressed foci. Thus, about 10 months after the 
beginning of therapy, maximal suppression of the foci 
is achieved and over time this process is replaced with 
sclerosing of the niches formed.

Figure 9. Change in the contrast agent accumulation over time shown by the data of T1-WI 
axial with contrast enhancement
Solid line — filling with contrast, decrease is noted; dotted line — tendency to the decrease of contrast 
agent accumulation

In-Depth Machine Analysis of MR Images of Metastatic Spine Lesion 
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Data interpretation. A high degree of coincidence 
between the estimates made by the radiologist and 
machine analysis system has been achieved: 9 of 12. 
In two cases, the radiologist’s conclusion “stabilization” 
disagreed with the system’s assessment “progression”, 
subsequent follow-up showed worsening of the 
condition. In one case, the radiologist’s “stabilization” 
differed from the system’s “improvement” due to the 
higher complexity of the objects. Osteo-1 follow-up 
report is presented as an example (see the Table).

To build the dependence graph for changes, 

50 axial slices of MRI T2-WI were used, about 600 
measurements altogether (Figure 11). 

To illustrate the possibilities of the additional control of 
the therapy process, changes in the classical indicator, 
tumor marker CA 15-3, are presented for the case of 
the established tumor regression (Figure 12). Values 
of the marker changes were assessed in compliance 
with the accepted clinical recommendations [11]. CA 15-3 
is seen to correlate well with AV, Contrast, and Caldera 
in a long-term perspective. The Pearson correlation 
coefficient between AV and CA 15-3 was 0.8 in this case.
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Figure 10. Caldera changes over time according to the data of T1-WI sag with contrast 
enhancement
Caldera values are expressed in percentage to the area of the vertebrae projection

Conclusions made by the radiologist and machine analysis system  
for Osteo-1 observation 

Examinations Radiologist’s conclusion System’s conclusion
MRI-0 (initial) Multiple metastatic lesion of the thoracic spine. 

Pathologic fractures are not revealed 
Low complexity

MRI-1 Reduction of trabecular edema zones, decrease 
of paramagnetic accumulation degree

Complexity growth: positive response  
to therapy

Improvement Improvement
MRI-2 Reduction of trabecular edema zones, formation 

of “dark” regions of osteosclerosis
Intensive complexity growth according to axial 
and sagittal data: positive response  
to therapy

Improvement Improvement
MRI-3 MRI image without essential dynamics, absence 

of new foci: process stabilization
Sharp reduction of complexity in both 
projections: a sign of progression

Stabilization Progression
MRI-4 Emergence of new metastatic foci, enlargement  

of previously detected foci in size
Continuing reduction of object complexity  
in both projections

Progression Progression

V. Steinhauer, N.I. Sergeev
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Discussion

Summing up the work, we would like once again 
to point to a very important fact for us and other 
researchers, which was the basis of our line of 
reasoning: at the microlevel, metastatic lesion is usually 
presented by a round or oval defect in osteoclastic 
variant of breast cancer, the effect of radial or spherical 
symmetry altering under the influence of therapy is also 
observed [12]. In the course of treatment, the graphic 
image of the metastatic lesion is changing. The most 
important diagnostic sign of a positive trend in treatment 
is the increase of the bone structure density at the lesion 
site [13]. A wide coverage of our algorithm (it works in 
different kinds of bone metastases) is explained by 
the fact that the first manifestation of reparation in 
osteoclastic metastases, i.e. appearance of a sclerotic 
rim around the lytic focus and subsequent gradual 
filling of the focus with the bone tissue, occurs in 93% 
of patients during 3–6 months after the beginning of the 
successful treatment [14].

With the help of the operators used in our study, we 
managed to trace the response to the therapy of breast 
cancer with bone metastases on the three similar clinical 
cases. We understand that it is not sufficient to make 
unambiguous conclusions; therefore, we tried to upgrade 
the reliability analyzing simultaneously several vertebrae 
in several MRI modes. We are going to extend the 
presented algorithm to other MRI sequences and to 
the CT data as well. In the process of our work, we also 
managed to define several limitations of the methods 
used.

Conclusion
The investigation performed has shown a high 

percentage of agreement between the results obtained 
by radiologists and by means of machine analysis when 
analyzing the state of breast cancer with metastatic 
spine lesion (Pearson correlation coefficient reached 0.8 
for the case of regression). This approach may be used 
as a support in clinical decision-making although the 
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this process itself requires further development, first of 
all, in the direction of classification of the results with the 
help of neural networks as we have used it previously for 
automatic leukocyte classification [15].

The machine analysis system allows one to achieve 
a deeper understanding of the interaction between 
morphology and process characteristics in metastatic 
breast cancer, to assess more fully the effect of therapy.
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