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The aim of the study is to assess the possibilities of predicting epileptiform activity using the neuronal activity data recorded from 
the hippocampus and medial entorhinal cortex of mice with chronic epileptiform activity. To reach this goal, a deep artificial neural network 
(ANN) has been developed and its implementation based on memristive devices has been demonstrated. 

Materials and Methods
The biological part of the investigation. Young healthy outbred CD1 mice were used in our study. They were divided into two groups: 

control (n=6) and the group with induced chronic epileptiform activity (n=6). Local field potentials (LFP) were recorded from the hippocampus 
and medial entorhinal cortex of the mice of both groups to register neuronal activity. The LFP recordings were used for deep ANN training. 
Epileptiform activity in mice was modeled by intraperitoneal injection of pilocarpine (280 mg/kg). LFP were recorded in the awake mice a 
month after the induction of epileptiform activity.

Mathematical part of the investigation. A deep long short-term memory (LSTM) ANN capable of predicting biological signals of neuronal 
activity in mice has been developed. The ANN implementation is based on memristive devices, which are described by the equations of 
the redox processes running in the memristive thin metal–oxide–metal films, e.g., Au/ZrO2(Y)/TiN/Ti and Au/SiO2(Y)/TiN/Ti. In order to 
train the developed ANN to predict epileptiform activity, a supervised learning algorithm was used, which allowed us to adjust the network 
parameters and train LSTM on the described recordings of neuronal activity.

Results. After training on the LFP recordings from the hippocampus and medial entorhinal cortex of the mice with chronic epileptiform 
activity, the proposed deep ANN has demonstrated high values of evaluation metric (root-mean-square error, RMSE) and successfully 
predicted epileptiform activity shortly before its occurrence (40 ms). The results of the numerical experiments have shown that the RMSE 
value of 0.019 was reached, which indicates the efficacy of proposed approach. The accuracy of epileptiform activity prediction 40 ms 
before its occurrence is a significant result and shows the potential of the developed neural network architecture.

Conclusion. The proposed deep ANN can be used to predict pathological neuronal activity including epileptic seizure (focal) activity 
in mice before its actual occurrence. Besides, it can be applied for building a long-term prognosis of the disease course based on the LFP 
data. Thus, the proposed ANN based on memristive devices represents a novel approach to the prediction and analysis of pathological 
neuronal activity possessing a potential for improving the diagnosis and prognostication of epileptic seizures and other diseases associated 
with neuronal activity.
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Introduction

Epilepsy is characterized by spontaneous and 
unpredictable convulsions, which are often accompanied 
by worsening or loss of consciousness, psychological, 
vegetative, sensory, and motor symptoms [1]. The 
presently existing antiepileptic medications can 
satisfactorily control epileptic seizures in two thirds of 
patients [2]; in 8% of patients, epilepsy may be surgically 
eliminated. The remaining 25% of epileptic patients 
cannot be adequately cured with any presently available 
means.

Nowadays, medical treatment remains the most 
common method of epilepsy therapy. However, there 
exist a number of problems associated with insufficient 
efficacy and therapeutic safety of antiepileptic drugs. 
Some forms of epilepsy do not respond to medical 
therapy and are difficult to control. The Lennox–
Gastaut syndrome, representing one of the forms of 
childhood-onset epilepsy manifesting itself during sleep, 
is referred to such forms [3–5]. Besides, a resistant form 
of epilepsy, which may develop due to the brain injury, 
infectious diseases, etc., is also refractory to the standard 
drug therapy [6]. It is worth mentioning that even at the 
proper level of the drug therapy efficacy, patients may 
periodically have some side effects: disorientation, 
depressive states, convulsions, slowing down effects, 
neurological deficit in the form of impairment of 
memory, attention, and concentration, problems with 
vision, hearing, and movement coordination [7–9]. In 
this connection, the search for the ways of prediction, 
correction, and treatment of epilepsy is one of the 
urging tasks facing the modern science requiring an 
interdisciplinary approach including neuroimaging 
technologies, gene investigations, current pharmacology, 
and mathematical methods such as machine learning of 
deep artificial neural networks (ANN).

In recent years, machine learning has proved to 
be a very effective tool for studying epilepsy. This 
can be explained by the fact that machine learning 
algorithms allow one to analyze a large amounts of 
data on brain activity [10–14] and medical images 
[15, 16], which, in its turn, helps better understand the 
nature of epileptic seizures, detect the regions of their 
origin and propagation, and develop the most effective 
plan of drug therapy taking into account individual 
patient’s characteristics [17, 18]. At the same time, it 
should be noted that the efficiency of deep ANN training 
depends directly on the quality of data used for training. 
Experimental data of neuronal activity in epilepsy may 
be acquired using various biological models. Here, the 
most preferable are the models using rodents (rats, 
mice), since rodents are capable of showing induced 
chronic epileptiform activity, which makes it possible to 
study pathological mechanisms of this disease.

In the current scientific literature, some 
interdisciplinary approaches to the investigation of 
neuronal activity in the biological models of epilepsy in 

rodents using machine learning are described in detail. 
For example, the results of classification of rodent 
neuronal activity in normal and pathological conditions 
have been presented in the papers [19, 20]. Of special 
interest are the investigations devoted to predictions 
of epileptic seizures based on the EEG data [21, 22]. 
The architectures of the deep ANNs vary from the 
convolutional neural networks [23] to transformers [24] 
and generative adversarial networks [25]. The authors 
[26] report a high accuracy obtained owing to machine 
learning in the task of predicting seizures in genetic 
models of absence epilepsy in rats based on recordings 
from corticothalamic regions [26].

It should be noted that deep neural networks have a 
great variety of parameters (weights) adjusted during 
training, which in its turn leads to high computational 
costs, which, with further development of this approach, 
may become excessive. In recent years, memristive 
architectures were widely used to solve this problem 
during implementation of various ANNs such as spiking 
neural networks [27, 28], multilayer neural networks 
[29–31], Hopfield neural networks [32, 33], convolutional 
neural networks [34, 35], and long short-term memory 
(LSTM) networks [36]. These new implementations 
of neural network architectures give an opportunity 
to obtain essential advantages from the standpoint of 
energy consumption, faster computation, and other 
important aspects. Memristive device can perform 
in-memory computations and a memristive crossbar 
array can accelerate vector-matrix multiplication. 
Therefore, the implementation of neural networks based 
on memristive devices is a promising way of solving the 
above problems.

Thus, owing to the advances in building ANNs, 
especially those using new energy-effective architectures 
(such as memristive crossbar arrays), new opportunities 
open up for effective prediction and analysis of 
pathological neuronal activity and, respectively, for 
designing novel state-of-the-art methods of predicting and 
treating epilepsy.

The aim of the study is to assess the possibility of 
predicting epileptiform activity using the data of neuronal 
activity recorded from the hippocampus and medial 
entorhinal brain cortex of mice with chronic epileptiform 
activity with the help of proposed deep artificial neural 
network, and to demonstrate the possibility of the 
implementation of this network using memristive devices.

Materials and Methods
Biological part of the investigation. The work 

complies with the Declaration of Helsinki (2013) and the 
Regulation of the European Parliament (86/609/EEC of 
November 24, 1986).

Young adult outbred male CD1 mice (n=12) with a 28–
35-g body mass taken from the Clinic of Experimental 
Animals of the Institute of Theoretical and Experimental 
Biophysics of the Russian Academy of Sciences 
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(Puschino, Russia) were used in the experiments. The 
mice were housed by two under the controlled conditions 
(22–24°C, 12-h light/dark cycle) with food and water 
ad libitum. The animals were randomly distributed into 
experimental (n=6) and control (n=6) groups. To induce 
status epilepticus in the model of chronic epilepsy, the 
awake mice were injected systemically with scopolamine 
(2 mg/kg intraperitoneally) and pilocarpine (280 mg/kg 
intraperitoneally) 30 min later.

The control mice of the same mass and age were 
injected a physiological solution in the same way. Status 
epilepticus was evaluated according to the Racine scale: 
stages 4, 5 (tonic-clonic seizures, round movements with 
posture loss and fall lasting not less than 1.5 h) were 
determined as the development of status epilepticus. 
Local field potentials (LFP) in the CA1 hippocampus field 
and in the medial entorhinal cortex, III (MEC III) layer, 
were recorded 1 month after the induction of status 
epilepticus. The procedure was done at the same time 
between 5:00 and 9:00 PM.

In the mice of the epileptic group, recording was 
performed in the interseizure period. Before the 
experiments, animals underwent surgical operation under 
general anesthesia (30 mg/kg of zoletil and 12 mg/kg of 
xylazine intramuscularly) in the Model 902 Small Animal 
Stereotaxic Instrument (David Kopf Instruments, USA). 
The body temperature was maintained with the help 
of electric pad, the cardiopulmonary condition during 
the operation was controlled by means of Oxy9Vet 
Plus pulse oximeter (Bionet, South Korea). Using 
the Brain Atlas (Paxinos & Watson, 1998), the depth 
electrodes (insulated Nichrome, 0.05 mm in diameter) 
were implanted into hippocampus (field CA1: AP 
(anteroposterior) was equal to –2.5 (rostro-caudal 
coordinate direction calculated from bregma); ML 
(mediolateral) was equal to 2 (mediolateral coordinate 
direction calculated from bregma); DV (dorsoventral) was 
equal to 1.5 (dorsoventral coordinate direction calculated 
from bregma)) and also into the medial entorhinal 
cortex (MEC III: AP=–3; ML=4.5; DV=5). A reference 
electrode was screwed into the occipital bone above 
the cerebellum. The entire complex was fixed on the 
head with acryl cementum. Within a week, the animals 
were recovering after the operation and getting used to 
the experimental environment. In this study, recordings 
of LFPs from hippocampus and MEC III were employed 
for ANN training, while the data on the study of the 
behavioral patterns in the process of neuronal activity 
registration were excluded.

Mathematical part of the investigation. A deep 
neural network of the LSTM architecture capable of 
predicting biological signals of mice neuronal activity 
has been developed. Approaches have been shown 
permitting us to obtain circuit implementation of the 
network based on memristive devices, which can be 
described by the equations of redox processes in the 
memristive thin metal–oxide–metal films: Au/ZrO2(Y)/
TiN/Ti and Au/SiO2(Y)/TiN/Ti.

Long short-term memory networks. A typical сell 
of the LSTM network is shown in Figure 1. It represents 
a recurrent network unit capable of memorizing values 
both for a short and long time intervals. The LSTM cell 
does not use the activation functions inside its recurrent 
components, therefore during ANN training using 
backpropagation through time, the stored value does not 
blur and the gradient does not vanish.

The cell operates in the following way. It has two 
hidden states: one represents a short-term memory ht, 
and the other — a long-term memory ct. Three filters 
regulate the information flow in and out of the cell. The 
cell also contains sigmoid blocks (σ) and blocks of 
hyperbolic tangents (tgh) called the gates.

The idea of a long-term memory consists in 
understanding by the total information from the short-
term memory at the previous step ht–1 and from input xt, 
what information should be saved and what should not.

Let us consider first the information which we want 
to forget (not to keep further). The forget gate ft is 
responsible for this function. Its equation can be written 
as follows:

ft=σ(Wxfxt+Whfht–1+bf),                        (1)

where σ is sigmoid activation function; Wxf, Whf are the 
trainable weight matrices. Indices here and further have 
the following meaning. The first one indicates reference 
to a short-term memory h or input x. The second index 
denotes the reference to the gates. Thus, Wxf is the 
trainable weight matrix corresponding to input x and 
forget gate ft. The trained biases are denoted as b, here 
and further the indices indicate reference to the gate. 
The bf is therefore the trainable bias corresponding to the 
forget gate ft. If component-wise multiplication (×) by 
the long-term memory state ct–1 gives 0, this information 
will be forgotten, if the result is 1, it will be saved.

The gate with sigmoid σ is used for the information 
we want to remember in order to understand, in which 
components of the long-term memory state ct useful 
information should be inserted:

it=σ(Wxixt+Whiht–1+bi).                          (2)

The gate gt with hyperbolic tangent (tgh) is employed 
to select which information is to be saved:

gt=tgh(Wxgxt+Whght–1+bg).                      (3)

In other words, in the scheme of Figure 1, 
multiplication means selection of information, while 
addition is adding new information. Then, the final 
formula for changing the long-term memory ct will be as 
follows:

ct=ftct–1+itgt.                                (4)

To obtain the output ht, the gate of the output ot and 
the information from the long-term memory ct are used: 

ht=ot×tgh(ct),                                (5)

where ot=σ(Wxoxt+Whoht+bo).
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Deep ANNs containing LSTM cells are called long 
short-term memory networks (LSTM networks). The 
deep neural LSTM network used in this study has 
the following architecture. The first input layer is a 
linear layer translating the input information into the 
100-dimensinal feature space. Then come two layers of 
LSTM cells. The result is projected by the linear output 
layer. The weight matrices W and shifts b are trained 
using the method of error backpropagation using mean 
squared error (MSE) loss function:

1 2

=1

ˆ( ) ,
N

n
n

MSE= y y
N

 n

where N is the number of samples, yn — true amplitude 
value for the nth sample, and ŷn is the predicted value for 
the nth sample.

The LSTM networks are suitable for classification, 
processing, and prediction based on the time series 
data since there may be intervals of unknown duration 
between important events in the time series. Relative 
insensitivity to the window length is also an advantage 
of the LSTM networks over the common recurrent 
networks, hidden Markov models, and other methods 
of machine learning in tasks with sequences in many 
applications. In our previous paper [37] we have tested 
the ensemble consisting of the neural networks of 
diverse types (the feed forward networks, reservoir 
computing, and LSTM networks) to predict extreme 
events and chaotic dynamics using the time series data.

Memristive devices. As a hardware, a weight matrix 
of the LSTM cell may be implemented using arrays of 
memristor crossbars [35, 36]. Separate memristive 
devices of the metal-oxide-metal type [38] represent 
thin-film structures, whose conductivity alters by 
several orders of magnitude when voltage is applied. 
A memristive device is a resistor with a memory, which 
is able to retain the received state: low or high ohmic, 
which points to the so-called resistive memory. To model 
the behavior of the laboratory memristors, we used a 
standard approach describing the reduction-oxidation 

processes running when electrical voltage u is applied. 
The memristor state w changes due to oxygen ions 
migration at the increase of the effective migration 
barrier Em. Migration in its turn is provided by Joule 
heating kT and applied electric voltage u. The total 
current density via the memristor represents the sum of 
linear jlin and nonlinear jnonlin constituents. The first one 
corresponds to the ohmic conductivity with resistivity ρ, 
the second one is determined by the transport of the 
charge carrier through the defects in the insulator region 
not occupied by the filaments including the region of the 
filament rupture. The current is carried according to the 
Poole–Frenkel mechanism with an effective barrier Eb.

In the present study, we used equations for memristive 
switching (6), which were derived in paper [39].
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Parameters A, B, α are taken from the experimental 
data. Parameters uset and ureset are threshold voltages of 
the memristive structure switching. Parameters Eb and 
Em represent effective internal parameters characterizing 
different films (Au/ZrO2(Y)/TiN/Ti, Au/SiO2(Y)/TiN/Ti), p is 
a positive integer, which provides a zero value w beyond 
the interval (0, 1).

Implementation of memristors in the crossbar arrays 
for vector-matrix multiplication gives a high accuracy of 
computing at a small size of the device itself.

Memristive neural networks. As a weight in the 
LSTM cell may take positive or negative values, it 
may be presented as a conductivity difference of two 
memristors ΔW=G2–G1 [40]. This doubles the number 
of memristors in the matrix. The implementation of the 
LSTM cell forget gate is shown in Figure 2. The similar 

ct–1 ct

ht–1 zt

h1tgh

tgh

xt

σ σ σ

Figure 1. The architecture of the long short-term memory cell 
zt — output
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approach may be used for building the rest of the gates.
For subsequent hardware implementation of the 

memristive neural network, elements such as memrisive 
device, memristive crossbar, sigmoid, and hyperbolic 
tangent were realized in the Simulink program taking 
into consideration the parameters of the laboratory 

memristors. The schematic diagram 
of the forget gate (see equations 
(1)–(5)) is presented in Figure 2. 
Sigmoid and hyperbolic tangent 
were implemented on transistors 
[41]. In this case, the property of 
differential amplifier was used: a 
gradual and smooth increase in the 
output voltage when the differential 
input is in the desired range.

Results
The designed deep neural 

network was trained on the data 
of neuronal activity of mice with 
epilepsy obtained in laboratory 
conditions. Three types of numerical 
experiments have been carried 
out. The data were preprocessed 
using Gaussian filtering in all cases 
to eliminate the noise. In the first 
experiment, we used the data of the 
long LFP recording for one mouse 
with epileptiform activity, which were 
divided into the training and testing 
samples in the ratio 4:1. Then, the 
data were normalized so that their 
mean value was equal to zero, and 

the variance to 1. Next, the data were converted to the 
“time sequence–response” format. For example, 20 
time counts were supplied to the model input, and the 
21st was used as a response. Our LSTM network was 
trained on these sequences. For single-step prediction, 
the testing part was preprocessed in the described way. 

Prediction step

R
M

SE

Figure 3. The value of RMSE metrics depending on the prediction step
The orange curve corresponds to numerical experiments where data were used with no filtering, blue 
curve — to the experiments with the data after Gaussian filtering

With filter
Without filter
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Figure 2. Schematic diagram of vector-matrix multiplication for the forget gate: 
I — memristive crossbar, where W is a weight matrix, G — conductivity of the 
memristive device; II — memristor structure, where u is applied voltage; III — 
the implementation scheme for the sigmoid function
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For multistep prediction, the model response to the 
previous step was iteratively added to the sequence to 
the network input. 

In the experiments of the second type, LFPs of all 
mice were used as the data. Each recording was divided 
into the training and testing sample in the ratio 4:1, then 
followed the same sequence of actions as in the first 
experiment.

In the third experiment, LFP recordings were used as 
training data for all mice except one, which served as a 
test mouse.

The quality of epileptoform activity prediction was 

evaluated using the root-mean-square error (RMSE) 
metrics:

1 2

=1

ˆ( ) ,
N

n
n

RMSE= y y
N

 n

where N is the number of samples, yn — true amplitude 
value for the nth sample, ŷn — predicted amplitude for 
the nth sample. 

The results of numerical experiments are presented in 
Figures 3–5. As seen from Figure 3, the quality of time 
series prediction strongly depends on the presence of a 
data filter and the prediction step. Single-step prediction 

V 
(m

V)

Time (ms)

True
Predicted

Figure 4. True (blue line) and predicted (red line) values for one step of prediction of local field 
potentials for a mouse with epileptiform activity

True
Predicted

Time (ms)

Figure 5. True (blue line) and predicted (red line) values for five steps of prediction of local 
field potentials for a mouse with epileptiform activity

V 
(m

V)
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is sufficiently accurate (RMSE=0.019), although some 
errors of incorrect prediction of the event amplitude 
are observed. The prediction accuracy decreases 
significantly with the increase of the prediction step size. 
True and predicted values for a single-step prediction 
of the time series with epileptiform activity are shown 
in Figure 4. Similarly, the true and predicted values for 
five-step prediction of the time series with epileptiform 
activity are presented in Figure 5. It is also seen in the 
Figures 3–5 that with the increase in the number of 
steps, the quality of prediction of high-amplitude values 
of the time series drops in the first place beginning with 
the fifth step. It should be noted that accurate prediction 
of high amplitude events is especially important for the 
prediction of seizure activity. Here, the events with the 
amplitude exceeding the mean value by more than 5 
standard deviations are considered high-amplitude 
events [38]. Notable, that for the prediction by less than 
5 steps ahead, precision equal to 100 and recall to 76 
may be obtained for high-amplitude events. These 
results agree with the previous data [42] on predicting 
epileptiform activity. Thus, the proposed network is 
able to predict precisely enough the appearance of 
epileptiform activity 40 ms before its onset.

Discussion
Early prediction of epileptic seizures is very 

important for preservation of patient’s health and life. 
Several seconds are enough for the individual to take 
a comfortable position and not to fall suddenly injuring 
himself, or not to create emergency situation, e.g., when 
driving a car.

Although in recent years, a significant progress was 
achieved in the detection of specific patterns in time 
series of neuronal brain activity [41–45], investigations 
in predicting seizure (focal) epileptiform activity were 
not fruitful. Nevertheless, several successful attempts 
were made in this field using various approaches. 
For example, Li et al. [43] have applied a permutation 
entropy method for prediction of seizure activity in 
rats. The authors succeeded in obtaining the mean 
prediction time of 4.9 s. Another approach based on the 
statistical properties of brain activity and the theory of 
extreme events [44] allowed for prediction of convulsion 
occurrence in WAG/Rij rats 7 s before their beginning 
[45]. A highly precise prediction of epileptic seizures prior 
to their onset by analyzing the LFP data using methods 
of deep neural network will provide the opportunity 
to expand essentially the possibilities of therapy and 
create the diagnostic methods enabling to detect early 
disorders in the patient’s rhythmic brain activity.

Usage of memristive elements as a hardware 
platform for ANN implementation is able not only to 
solve a number of technical problems typical for ANN 
(great memory and energy consumption for training) 
but will help develop portable therapeutic devices for 
tracing patient’s brain activity, and in case of threatening 

conditions, apply optimal external stimulus to eliminate 
this state. Creation of such devices in combination with 
traditional therapy will provide the opportunity to improve 
the quality of patient’s life, reduce morbidity and mortality 
rate.

Conclusion
In the present study, we have used a deep artificial 

neural network to predict pathological neuronal activity, 
in particular, chronic epileptiform neuronal activity 
in mice. The main advantage of this approach consists in 
application of memristive devices as a hardware platform 
for implementation of the artificial neural network. This 
approach provides fast and energy-efficient computing.

The designed artificial neural network demonstrates 
the ability to predict seizure (focal) epileptiform 
activity prior to its actual occurrence. This study is 
of great importance for early epilepsy diagnosis and 
treatment. The results obtained contribute to a deeper 
understanding of the mechanisms of epileptic seizure 
development in general.

Usage of deep artificial neural networks and 
memristive devices open up new prospects for the 
development of novel and more precise methods of 
predicting epileptiform activity and other neurological 
diseases. Application of a more detailed mathematical 
analysis may help improve the accuracy and reliability of 
predictions. 

However, application of the obtained results in clinical 
practice requires additional investigations in humans. 
Such studies will allow the specialists to confirm and 
summarize the results and evaluate the suitability of the 
developed methodology for predicting and diagnosing 
epilepsy in patients.
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