
СТМ ∫ 2023 ∫ vol. 15 ∫ No.5   33

reviews

Brain State-Dependent Non-Invasive Neurostimulation  
with EEG Feedback: Achievements and Prospects (Review)
DOI: 10.17691/stm2023.15.5.04 
Received May 10, 2023

A.I. Fedotchev, DSc, Leading Researcher, Laboratory of Biosystems Regulating Mechanisms1;
A.A. Zemlyanaya, MD, PhD, Senior Researcher, Department of Exogenic and Organic Disorders  
and Epilepsy2

1Institute of Cell Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., Pushchino,  
 Moscow Region, 142290, Russia; 
2Moscow Research Institute of Psychiatry — Branch of the Serbsky State Scientific Center for Psychiatry  
 and Narcology of the Ministry of Health of Russia, Bldg. 10, 3 Poteshnaya St., Moscow, 107076, Russia

Non-invasive brain stimulation with electroencephalogram (EEG) feedback is an intensively developing and promising area of 
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development of this research line. Modern data on the developed approaches to the practical use of various types of brain state-dependent 
adaptive neurostimulation with EEG feedback were analyzed. The main attention is paid to the studies using non-invasive magnetic and 
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technologies in clinical medicine. The results of the authors’ own research are presented.
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Introduction

The development and clinical application of 
non-invasive brain stimulation methods is a promising 
and intensively advancing field of neurophysiology, 
which is called “non-invasive brain stimulation” (NIBS). 
Transcranial magnetic stimulation and transcranial 
direct and alternating current stimulations are 
considered to be the most developed NIBS techniques 
[1–3], so are rhythmic sensory stimulation (acoustic, 
video- and audiovisual) [4–6]. NIBS techniques 
enable to achieve improved outcomes in neurological 
rehabilitation of neurologic patients [7–12], in cognitive 
and stress-induced impairments [13–18], when treating 
psychiatric disorders [19–24], and in enhancing 
cognitive functions in healthy people [25–30].

Despite the intensive development and researchers’ 
increased interest, existing NIBS techniques have a 
number of drawbacks, such as low efficiency, high 
variability, and poor reproducibility [31–33]. The 
reason is that standard NIBS techniques do not reckon 
with the dynamic nature of the neural endogenous 
oscillatory activity, and the stimuli are delivered during 
different physiological brain microstates leading to the 
high variability of a single-stimulus effect and a weak 
cooperative stimulation effect [34–36].

To eliminate the shortcomings, some authors 
recommend using closed-loop brain state-dependent 
neurostimulation protocols, which take into consideration 
the ongoing brain microstates dynamics [37–40]. The 
real-time electroencephalogram (EEG) data is an 
optimal source of the feedback signals [41–44] due 
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to EEG advantages, such as non-invasiveness, high 
temporal resolution, ease of use, and real-time data 
extraction [45–47]. The EEG-controlled stimulation 
protocols enable NIBS techniques to achieve a highly 
personalized effect and offer physiologically informed 
adaptive neuromodulation [48–52].

Over the past 5 years, the number of studies on 
the effects of the closed-loop brain state-dependent 
non-invasive neurostimulation has increased 
exponentially. The plethora of recent publications and 
a wide variety of specific experimental approaches 
necessitate the literature data summary on the 
achievements and promising trends for further NIBS 
development. Therefore, this review studies the 
present-day data on the developed approaches to 
the practical use of various types of the closed-loop 
brain state-dependent adaptive neurostimulation. 
The article focuses on non-invasive magnetic and 
electric influences, as well as acoustic and audiovisual 
stimulation. The authors present the possibilities and 
prospects of the clinical application of the techniques. The 
review shows the results of the authors’ own research. 
The literature search was carried out on the PubMed/
MEDLINE database using the key words “closed-loop 
stimulation” and “adaptive neurostimulation”.

Brain state-dependent non-invasive 
neurostimulation achievements

The advantages of the EEG feedback when 
correcting many unfavorable functional states have been 
demonstrated in a number of studies. The widespread 
implementation of the EEG-based closed-loop 
neurofeedback into the previously used methods of 
human sleep regulation is one of the most intensively 
developing research fields. Its conceptual basis is 
based on the theoretical and methodological ideas 
that non-invasive sensory closed-loop stimulation can 
improve sleep quality, enhance cognitive functions and 
memory consolidation [53–55]. These effects have been 
demonstrated in the experiments with different sensory 
closed-loop stimulations such as transcranial electrical 
stimulation [56–59], transcranial magnetic stimulation 
[60–62], and acoustic stimulation [63–65]. Success was 
achieved with different EEG feedback parameters: the 
EEG phase-specific rhythm [66, 67], the occipital alpha 
rhythm power [68, 69], slow-wave EEG components 
[70, 71] and EEG sleep spindles [72].

The EEG-controlled acoustic stimulation is effective 
in other clinical applications. The acoustic stimuli, 
which are translated real-time from dominant EEG 
frequencies by software, lead to a clinically significant 
decrease in the post-traumatic stress symptoms [73]. 
According to the authors [74], the online update of 
patients-own EEG patterns and resonance between 
the audible tones and oscillating brain networks 
allow the brain to auto-calibrate, relax, and overcome 
persisting pathological states.

Another variant of the EEG-controlled acoustic 
stimulation has been successfully used in bioacoustic 
correction consisting in presenting to a person the 
acoustic computer-transformed signals obtained during 
an ongoing EEG. The method enables to “listen to” the 
brain real-time work and correct unfavorable functional 
organism states in cognitive and emotional-volitional 
disorders [75, 76].

The “Music of the brain” concept, according to 
which EEG parameters transformation increases the 
effectiveness of musical therapeutic effects, is the basis 
of our original research [77]. There was developed 
a version of the closed-loop acoustic stimulation in 
the form of classical music, the volume of which is 
automatically modulated by the ongoing amplitude of 
the dominant spectral peak in the range of the EEG 
alpha rhythm, or EEG alpha oscillator [78, 79]. The 
method was supplemented by the computer conversion 
of the ongoing EEG alpha oscillator amplitude 
into music-like signals resembling flute sounds in 
timbre and smoothly varying in pitch and intensity 
[80]. The developed musical neurointerfaces have 
been successfully tested to correct many functional 
disorders, as well as to eliminate the risks of specialist 
reliability [81] and in the cognitive rehabilitation in the 
elderly [82].

We have then shown that photostimulation, which is 
automatically generated in real time based on digitized 
values of the ongoing EEG, also has positive effects 
[83]. The combination of the described approaches 
resulted in the development of the audiovisual adaptive 
neurostimulation with double feedback from the human 
EEG [84]. The method consists in simultaneous 
stimulation with music-like stimuli generated based 
on the current amplitude of the alpha EEG oscillator 
and with rhythmic light stimulation generated based on 
the current EEG. The method advantages are the high 
personalization and therapeutic effectiveness due to the 
feedback from person’s own bioelectric characteristics, 
the involvement of mechanisms of multisensory 
integration, neuroplasticity and resonance brain 
mechanisms in the functional state normalization under 
stimulation; other advantages include automatic, without 
conscious patient efforts, management of therapeutic 
sensory effects, which makes it possible to use adaptive 
neurostimulation to correct adverse state shifts in 
patients with altered levels of consciousness, the elderly, 
and children [85, 86].

These advantages enabled EEG-controlled 
light-sound neurostimulation to be successful in 
stress-induced states correction [87, 88], the functional 
state optimization [89], and correction of its adverse 
shifts [90, 91], in cognitive rehabilitation of high-tech 
specialists [92], as well as in clinical studies in cognitive 
rehabilitation in stroke patients [93] and in the treatment 
of post-traumatic stress and professional burnout [94].

Thus, there is a wide range of conditions when 
brain-dependent EEG-controlled neurostimulation 
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can be successfully used, as well as the specific 
characteristics of the therapeutic stimulations (see 

the Table). The number of studies on the subject is 
increasing annually, which indicates it to be promising.

Dynamics of non-invasive EEG-controlled methods development 

Study aim/effect Stimulation type EEG control parameter Reference
Sleep quality improvement, memory 
consolidation

Transcranial electric stimulation Slow-wave EEG components Ketz et al., 2018 [56]

Correction of stress-induced conditions Classical music Alpha EEG oscillators Fedotchev, 2018 [78]
Elimination of stress-induced risks of specialist 
reliability

Classical music Alpha EEG oscillators Fedotchev et al., 2018 [79]

Post-traumatic stress treatment Acoustic stimuli Dominant EEG rhythms Shaltout et al., 2018 [73]
Correction of functional disorders Sound/music-like stimulation Alpha EEG oscillators Zemlyanaya et al., 2018 [80]
Sleep quality improvement, cognitive control 
enhancement

Transcranial electric stimulation EEG rhythm phase Mansouri et al., 2018 [66], 
2019 [57]

Sleep quality improvement, memory 
consolidation

Acoustic stimuli Sleep spindles in EEG Ngo et al., 2019 [72]

Correction of stress-induced conditions Rhythmic light stimulation Digitized native EEG Fedotchev, 2019 [83]
Correction of stress-induced conditions EEG-controlled light-sound 

stimulation
Alpha EEG oscillators + native 
EEG

Fedotchev et al., 2019 [84]

Revelation of neurodegenerative disorders 
markers

Transcranial magnetic stimulation Induced potentials Poydasheva et al., 2019 [60]

Elimination of stress-induced risks of specialist 
reliability

Sound/music-like stimulation Alpha EEG oscillators Fedotchev et al., 2019 [81]

Treatment of posttraumatic stress disorder Acoustic stimuli Dominant EEG rhythms Tegeler et al., 2020 [74]
Cognitive rehabilitation of elderly patients Sound/music-like stimulation Alpha EEG oscillators Fedotchev et al., 2020 [82]
Enhancement of cognitive functions  
through neuroplasticity induction

Transcranial electric stimulation EEG occipital alpha rhythm Zarubin et al., 2020 [58]

Depressive disorder therapy Transcranial magnetic stimulation EEG alpha and theta rhythms Zrenner et al., 2020 [68]
Correction of stress-induced conditions Sound/music-like stimulation Alpha EEG oscillators Fedotchev, 2020 [87]
Sleep quality improvement, memory 
consolidation

Acoustic stimuli Slow-wave EEG components Schneider et al., 2020 [70]

Enhancement of cognitive and visual functions Transcranial electric stimulation EEG temporal alpha rhythm Stecher et al., 2021 [69]
Human functional state optimization EEG-controlled light-sound 

stimulation
Alpha EEG oscillators + native 
EEG

Fedotchev et al., 2021 [89]

Cognitive rehabilitation in stroke patients EEG-controlled light-sound 
stimulation

Alpha EEG oscillators + native 
EEG

Mukhina et al., 2021 [93]

Enhancement and clarification of adaptive 
neurostimulation processes

Transcranial magnetic stimulation Peak values phase of EEG 
rhythms

Shirinpour et al., 2021 [67]

Treatment of posttraumatic stress disorder  
and burnout 

EEG-controlled light-sound 
stimulation

Alpha EEG oscillators + native 
EEG

Fedotchev et al., 2021 [94]

Bioacoustic correction of patients’ condition EEG-controlled acoustic stimulation Frontal and occipital EEG Ivanova, Kormushkina,  
2021 [75]

Correction of negative functional conditions EEG-controlled light-sound 
stimulation

Alpha EEG oscillators + native 
EEG

Fedotchev et al., 2021 [90]

Enhancement of effects in stimulation 
parameters optimization

Transcranial electric stimulation Slow-wave EEG components 
frequency

Ladenbauer et al., 2022 [59]

Depressive disorder therapy Transcranial magnetic stimulation EEG prefrontal alpha rhythm Faller et al., 2022 [61]
Sleep quality improvement, memory 
consolidation

Acoustic stimuli Slow-wave EEG components Debellemanière et al., 2022 
[64]

Post-COVID syndrome treatment EEG-controlled light-sound 
stimulation

Alpha EEG oscillators + native 
EEG

Polevaya et al., 2022 [95]

Sleep quality improvement, memory 
consolidation

Acoustic stimuli Slow-wave EEG components Ngo, Staresina, 2022 [63]
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End of the Table

Study aim/effect Stimulation type EEG control parameter Reference
Enhancement of effects in considering EEG 
phase

Transcranial magnetic stimulation EEG occipital alpha rhythm 
phase

Ding et al., 2022 [62]

Bioacoustic correction of patients’ condition EEG-controlled acoustic stimulation Frontal and occipital EEG Shchegolkov et al.,  
2022 [76]

Sleep quality improvement, memory 
consolidation

Acoustic stimuli Slow-wave EEG components Ruch et al., 2022 [71]

Cognitive rehabilitation of a specialist EEG-controlled light-sound 
stimulation

Alpha EEG oscillators + native 
EEG

Fedotchev, 2022 [92]

Sleep quality improvement, activation  
of autonomous functions

Acoustic stimuli Dominant EEG rhythms Tegeler et al., 2023 [65] 

Brain-dependent non-invasive  
neurostimulation prospects

Intensive and successful development of 
brain-dependent non-invasive neurostimulation has 
determined numerous beliefs about the prospects of 
using the method. It is noted that by the year of 2035 
the non-invasive neurotherapy will have been based on 
neuromodulation devices, which are already effective 
to treat motor disorders, epilepsy, pain, depression, 
and other neurological disorders, due to the progress 
in understanding neuroanatomic networks and 
mechanisms of the neurostimulation with feedback from 
highly specific biomarkers including personalized EEG 
characteristics [96]. By now, the attempts to find highly 
specific EEG biomarkers enabled to demonstrate the 
possibilities of many individual EEG characteristics, 
such as short (50–100 ms) stable resting EEG 
microstates [97], interictal spikes [98], and the slow 
EEG wave phase [99].

The researches aimed at improving brain stimulation 
algorithms with feedback are integral for considering the 
prospects for developing brain-dependent non-invasive 
neurostimulation. Thus, there has been developed 
a reliable adaptive neuromodulation algorithm able 
to thoroughly track the trajectories of current brain 
conditions for effective brain diseases treatment 
and brain functions improvement [100]. A manual on 
electrophysiological registration and brain stimulation 
has been published, which allows the user to master 
the EEG data analysis and adjust immediately the 
stimulation parameters in feedback protocols [101]. 
Since the natural frequencies of neural activity can 
serve as precise targets of rhythmic stimulation 
effects [102–104], the methodology of optimal EEG 
preprocessing to increase the effectiveness of 
EEG-controlled neurostimulation seems promising [105].

The issue of the EEG-controlled adaptive 
neurostimulation development has been considered 
in our recent studies [84, 106]. Since EEG-controlled 
adaptive neurostimulation is based on the automatic 
modulation of sensory stimuli by the person’s own 

EEG rhythm components, one of the possible ways to 
increase its effectiveness might be a prior amplification 
of the modulating factor, i.e. the subject’s EEG. 
A resonance scanning technique is used for this purpose 
consisting in LED photostimulation with a step-by-step 
increasing frequency in the range of theta, alpha, and 
beta EEG rhythms [107].

Resonance scanning prior to adaptive 
neurostimulation significantly has been shown to 
increase the effectiveness of EEG-controlled adaptive 
neurostimulation in the treatment of post-COVID 
syndrome [95] and eliminating the consequences of 
exam stress in university students [108]. The resonance 
scanning combined with EEG-controlled adaptive 
neurostimulation has shown an increase in the alpha 
EEG rhythm power accompanied by a decrease in 
stress levels, an improved emotional state and cognitive 
performance due to the progressive involvement of 
resonant and integration brain and neuroplasticity. It 
is concluded that the developed combined approach 
to neurostimulation can be used after additional 
experimental studies in various rehabilitation measures, 
in the correction and rehabilitation of the extreme 
profession specialists’ state, in educational institutions 
to enhance human cognitive activity and learning 
processes.

Conclusion
Brain-dependent non-invasive neurostimulation 

with EEG feedback is an intensively developing and 
promising neurophysiology field. The closed-loop brain 
stimulation enables to achieve high personalization and 
the effectiveness of therapeutic effects by taking into 
consideration the dynamics of the brain microstates.

The automatic modulation of sensory stimuli by the 
current EEG parameters is considered to be a promising 
research topic. Automatic control of therapeutic sensory 
stimuli makes it possible to use EEG-controlled adaptive 
neurostimulation to correct adverse state shifts in 
patients with altered levels of consciousness, the 
elderly, and children. The use of preliminary resonance 
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scanning is especially promising; it causes the 
activation of potential EEG resonators and increases 
the brain reactivity to subsequent EEG-controlled 
adaptive neurostimulation. As a result of a combination 
of exogenous and endogenous rhythmic stimulation, 
positive psychophysiological effects are recorded after 
a single therapeutic effect. Such a combined approach 
to neurostimulation can be used in a wide range of 
rehabilitation procedures.
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