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Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine 
and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, 
as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of 
microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic 
processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and 
tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the 
liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target 
for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ.

This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and 
non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular 
communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies 
is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently 
being developed.
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Introduction

Liver is one of the most important organs responsible 
for homeostasis control in mammals. It is involved 
in various physiological processes, including bile 
production, plasma proteins synthesis, nutrients 
absorption, detoxification, and vitamins storage. The 
major reactions of carbohydrate, protein and lipid 
metabolism proceed in the liver, and it is also considered 
the most important immunological organ, capable of 
activating the immune system in response to circulating 
antigens. In addition to the large number of cell types 
in the liver structure, one can see a high functional 

specialization of hepatocytes. The functional unit here is 
the liver lobule. Based on modern understanding of the 
lobule structure, hepatocytes are located in three areas, 
specified per their location along the porto-central axis, 
which governs their functional profile. Recent studies 
based on high-throughput single-cell RNA sequencing 
combined with spatial transcriptomics and proteomics 
confirmed their high areal heterogeneity. Furthermore, 
it was established that the areal specialization of 
hepatocytes is very flexible and dynamic, it varies in 
accordance with multiple physiological signals, which 
requires active regulation of metabolic gene expression.

MicroRNAs are short RNA oligonucleotides of 20–
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22 bases long, which are involved in the expression 
regulation of, by various estimates, 30 to 60% of human 
genes. The enormous regulatory potential of microRNAs 
is based on their specific features: one microRNA 
molecule can have from hundreds to thousands of 
potential target genes [1, 2]; microRNA biogenesis is 
one of the fastest among cellular transcripts: at least 
40% of microRNAs mature within 5 min [3]. Therefore, 
microRNAs create a complex, highly dynamic, 
context-dependent network of interactions with target 
transcripts. Approximately 2654 mature microRNA 
sequences in the human genome were identified and 
reported in miRbase 22.1 (https://www.mirbase.org/).

Molecular diagnostics based on the analysis of the 
following panels: transcripts, proteins, and metabolites 
are considered a promising method to identify a widest 
range of pathologies at an early stage, assess the clinical 
phenotype, as well as monitor the course of the disease, 
evaluate therapy efficacy and the risk of the disease 
recurrence. Due to the high dynamics of the microRNAs 
pool in the body, as well as their stability in samples 
of biological fluids and tissues, interest in microRNAs 
as a basis for diagnostic test systems persists for 
a decade and a half. Currently, the contribution of 
various microRNAs in liver homeostasis, pathologies 
development, and regeneration stimulation is actively 
studied, and therapeutic strategies for treatment of a 
wide range of liver diseases are developed. However, 
when defining the microRNAs function or developing 
microRNA-based therapies, authors often consider 
their functioning as the one of negative regulators of 
translation, without taking into account a wide range 
of non-canonical effects of microRNAs. At present, 
there are only few large reviews of non-canonical 
functioning of microRNAs [4–7]. One of the currently 
unsettled problems of the microRNA-based therapy is 
related to off-target effects that occur due to nonspecific 
microRNAs delivery or off-target genes regulation. Thus, 
creation of microRNAs-based therapeutic strategies 
requires further studies of the microRNA-target 
interaction network in various liver cell populations, 
as well as examination of non-canonical functions of 
microRNAs in liver homeostasis.

This review tackles biogenesis of microRNAs, features 
of their encoding, transcription, and maturation, classical 
and non-classical mechanisms of their operation, as well 
as clinical approaches to treatment and diagnosis of liver 
diseases.

Biogenesis of microRNAs
Reviews [8–11] describe in detail the current 

understanding of the microRNA biogenesis pathways. 
We shall briefly consider the main provisions thereof.

Features of microRNA encoding
Genes encoding microRNAs can be divided into 

several categories depending on their location in the 

genome and, respectively, the properties related to 
encoding at a specific locus.

The majority of currently known human microRNAs 
described in the miRBase are encoded in intergenic 
regions (68%). Most intragenic microRNAs are intronic 
(12% of all genes). Other microRNA genes are located in 
repeats, long non-coding RNAs (lncRNAs), untranslated 
regions (UTRs), or encoding regions of host genes 
[12]. Non-canonical microRNAs can also rise from 
other non-coding RNAs (tRNAs, small nucleolar RNAs, 
etc.), mitochondrial microRNAs, and viral microRNAs 
[13, 14]. The role of these RNAs in the regulation of 
cell processes is still underexplored. As microRNA 
transcriptional activity greatly depends on the genomic 
context, we decided to consider several examples. The 
role of microRNAs encoded by the viral genome shall be 
discussed in a separate section.

MicroRNA genes are often located in the so-called 
clusters. Moreover, microRNAs can be encoded within the 
genes of other cell transcripts and can be co-transcribed, 
which is confirmed by the appropriate correlation of the 
expression patterns for several genes [15]. Here, intronic 
microRNAs can be transcribed independently of their host 
gene, whereas polycistronic microRNA transcripts can be 
subject to alternative splicing to obtain specific microRNA 
expression [16, 17]. MicroRNA-17–92, one of the most 
precisely characterized microRNA clusters, is well known 
for its important role in cell differentiation and ontogenesis 
of the mammals. Contrary to ideas on regulation of the 
microRNA clusters expression, members of this cluster 
can be expressed both in a coordinated and in a separate 
manner [18, 19]. Dysregulation of this cluster and its 
individual constituents in the liver may contribute to 
development of hepatocellular carcinoma (HCC) as well 
as to progression of various liver pathologies. Impaired 
expression of microRNA-17 can result in the steatosis 
development [20].

Co-regulated mRNA and intron-encoded microRNA 
can be exampled by microRNA-33. In humans, 
microRNA-33a and microRNA-33b are encoded in the 
genes’ introns, which in turn encode sterol regulatory 
element binding proteins (SREBP-2 and SREBP-1); in 
mice, only one isoform of microRNA-33 (located in the 
intron of SREBP-2) is expressed. SREBP transcription 
factors, like microRNA-33, are key regulators of lipid 
metabolism and transport [21, 22]. Members of the 
microRNA-33 family are the first identified microRNAs 
that regulate lipoprotein homeostasis [21, 23].

MicroRNAs encoded within lncRNAs are also 
worth noting. An example of them is microRNA-155, 
which encodes the miPEP155 regulatory peptide [24]. 
Unlike plant cells, where similar peptides regulate 
microRNAs expression with which they were encoded, 
miPEP155 does not affect the level of microRNA-155, 
rather it modulates antigen presentation by activated 
antigen-presenting cells through interaction with the 
chaperone protein HSC70, which affects its antigen 
transporter function in dendritic cells [25].
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Figure 1. Canonical biogenesis and variants of microRNA functioning
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MicroRNAs transcription and maturation

MicroRNA maturation is traditionally divided into three 
stages: a long precursor (pri-microRNA), which, after 
splicing and processing, is sent to the cytoplasm in the 
form of a hairpin (pre-microRNA), giving rise to a mature 
microRNA. The main stages of microRNA biogenesis 
and functioning are demonstrated in Figure 1.

Canonical microRNAs in animals are transcribed by 
RNA polymerase II as long primary microRNA transcripts 
(pri-microRNAs). Hairpin structures in pri-microRNAs 
are cleaved by the DROSHA and DGCR8 endonuclease 
complexes thus forming hairpin pre-microRNAs. 
Transport of pre-microRNA from the nucleus to the 
cytoplasm is mediated by exportin 5 (XPO5) and 
RAN-GTP, although other export mechanisms are also 
suggested [26]. Pre-microRNA enters the cytoplasm and 
is cleaved near the terminal loop by RNase III DICER 
according to cleavage rules that consider the distance 
from the end of the hairpin fixed in the PAZ domain, 
as well as various mismatches in the hairpin stem [27, 
28]. Moreover, recent large-scale analytic studies of 
pre-microRNA variants identified a conserved GYM motif 
(where G is paired guanine, Y is paired pyrimidine, M is 
unpaired cytosine, or adenine) adjacent to the human 
DICER cleavage site. The GYM motif is recognized by 
the dsRNA binding domain (dsRBD) of DICER and can 
ignore other cleavage rules [29].

The microRNA duplex is loaded into Argonaute (AGO) 
proteins (AGO1–AGO4 in mammals). The AGO1 and 
AGO2 proteins are the most expressed both in the liver 

and in other tissues [30, 31]. Once loaded, only one 
strand, called the guide strand, whose 5’ nucleotide 
interacts with the MID domain of the AGO proteins, is 
kept for further formation of a final complex called the 
RNA-induced silencing complex (RISC) [32].

The origin of the microRNA strand from different 
hairpin arms determines the name of the microRNA 
mature form. The 5p strand results from 5’ end of the 
pre-microRNA hairpin, whereas the 3p strand — from 
3’ end. Both strands derived from a mature microRNA 
duplex can be loaded into the Argonaute proteins family 
in an ATP-dependent manner. For any microRNA, 
the proportion of AGO-loaded 5p or 3p strands 
significantly varies depending on the cell type or cellular 
environment, ranging from almost equal proportions to a 
predominance of one of them [33].

In addition to different lengths due to various 
scenarios of pre-microRNA processing by DICER, 
the repertoire of microRNA isoforms is enriched 
by introduction of terminal modifications and A-to-I 
(adenine to inosine) bases editing [34]. Such events 
are often perceived as artifacts of high-throughput 
sequencing [35], but many iso-microRNAs are found 
in cells in a proportion equal to the level of canonical 
microRNA or even higher than this level, which raises 
the question of their biological significance and role in 
pathologies development. It was demonstrated [36] that 
iso-microRNAs are functional in a cell, and isoforms with 
5’ modifications have an altered repertoire of targets due 
to a shift in the target recognition region compared to 
3’ isoforms, which can also lead to changes in the list 
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of regulated transcripts [37] and influence their affinity for 
the target. For instance, Park et al. [38] found that the 5’ 
isoform of microRNA-21-5p is clinically significant in the 
HCC development and progression due to suppression 
of the growth hormone receptor (GHR) expression. 
Biogenesis of microRNA isoforms is described in details 
in the review [39].

Identification of mechanisms of microRNA processing 
and generation of microRNA isoforms is a key priority for 
understanding their biological function, as well as creating 
analytic systems and therapeutic strategies [40, 41].

Mechanism of microRNA functioning

Translational repression mediated by microRNAs
Suppression of protein synthesis on the mRNA 

template is translational repression mediated by 
microRNAs, which can occur through several 
independent pathways, the final result of which is 
destruction of the structure that brings together 3’ and 
5’ ends of the mRNA. Both pathways can act both 
independently or jointly.

The guide strand and the AGO protein form the 
minimal RISC effector complex (miRISC). MicroRNA 
directs miRISC to specifically recognize mRNA and 
post-transcriptionally regulate gene expression. 
Recognition is conducted using the microRNA seed 
region. Bases 2–7 or 2–8 of microRNA interact through 
Watson–Crick base pairing with complementary 
sequences of the target mRNA called microRNA response 
elements (MREs). Mismatches in the seed region and its 
low affinity may require additional complementarity sites 
for effective silencing [42]. The majority of microRNA 
binding sites are located in the 3’ untranslated region 
(UTR) of the target mRNA. However, microRNA binding 
sites were also found in 5’UTR sequences, in encoding 
and promoter regions. In addition to the classical sites at 
positions 2–8 of microRNA bases, there are alternative 
mechanisms for target recognition. For microRNA-122, 
there were 1923 target transcripts identified by a 
non-classical binding site with a G-bulge formation. This 
gives 18.7% of transcripts regulated by the ten most 
expressed microRNAs in the liver [43].

The degree of microRNA complementarity to the 
target determines the mechanism of gene silencing. 
MicroRNA-directed cleavage of mRNA induced by 
high sequence complementarity is catalyzed by AGO2. 
Only a relatively small part (<6%) of all microRNAs in 
mammalian cells are susceptible to this mechanism 
[44]. At that, nucleotide mismatches in the central region 
and positions 17–21 during base pairing prevent AGO2 
endonuclease activity but initiate recruitment of proteins 
that promote mRNA decay by means of deadenylating, 
decapping, and exonucleolytic cleavage [45–47]. The 
detailed mechanism of translational repression variants 
is provided in the review [48]. The main aspects are 
provided below.

The miRISC effector complex can inhibit translation 
initiation in several sequential stages. In most cases, 
the first stage is the reversible release of 4A eukaryotic 
initiation factors (eIF4aI and eIF4aII) from the 
mRNA–protein complex, which prevents the assembly 
of the eIF4F translation initiation complex [49], as 
well as recognition of the translation initiation site. 
This mechanism of microRNA-mediated translational 
repression is a sequestration of mRNA from the 
translation machinery into cytoplasmic processing 
bodies (P-bodies), which are the functional site of 
microRNA-mediated gene silencing. P-bodies have no 
translation mechanism and, therefore, do not participate 
in the translation process; however, they ensure 
sequestration and fast inclusion of important regulatory 
proteins and translation factors into the actively 
transcribed pool of mRNA [50, 51].

Then, one sees irreversible degradation with removal 
of the 3’-poly(A) tail (deadenylating) and 5’-cap structure 
(decapping) of the mRNA, which makes it open to exo- 
and endonucleases. TNRC6 (GW182) proteins, partners 
of AGO, play an important role in target repression by 
interacting with poly(A) binding protein and bringing 
deadenylation complexes PAN2–PAN3 and CCR4–
NOT to target mRNAs [52, 53]. Decapping exposes the 
5’ end of the mRNA to degradation by the conservative 
5’→3’ cytoplasmic exonuclease XRN1, recruited to the 
target mRNA through direct interaction with decapping 
protein 1 (DCP1), which ensures fast removal of 
decapped mRNAs [54]. Shortening or removal of the 
poly(A) tail of mRNA can be a signal for decapping, 
as it promotes recruitment of the Lsm1–Lsm7 and 
PatL1 proteins, which activate the decapping complex 
assembly [55].

Currently, interaction of several microRNAs with 
one target, which can mediate competition between 
microRNAs, is actively studied [56, 57]. It was 
demonstrated [58, 59] that microRNA binding sites 
separated by a maximum of 26 nucleotides can act 
cooperatively. The human transcriptome is enriched 
with microRNA binding sites located at a distance that 
allows cooperativity. Surprisingly, some microRNAs 
are destabilized by specific interactions with mRNA 
[60–62]. These transcripts contain sequences that 
almost completely match microRNAs and, in turn, 
contain central mismatches. This type of interaction 
makes microRNA unload from the AGO and destabilizes 
the 3’ end of the microRNA. This post-transcriptional 
regulation of microRNAs is also called target-directed 
microRNA degradation (TDMD). In contrast to cleavage 
induced by the catalytic activity of AGO2, TDMD 
requires complete 3’ complementarity, which opens 
microRNAs to enzymes [63].

To effectively predict microRNA targets and design 
artificial and small interfering (siRNA) microRNAs that 
target single transcripts as the result of the extended 
area of complementarity, it is necessary to understand 
thermodynamic stability of the microRNA–target 
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duplex, as well as the structure of protein domains 
that are included in the RISC complex [64]. The range 
of microRNA targets, as well as the mechanism of 
translational repression, shall be determined by the 
composition of the RISC complex and the interaction 
between the pool of targets and microRNAs in the cell 
[65]. Reviews [66, 67] contain descriptions of the most 
recent algorithms to predict microRNA targets and 
the most popular resources based on both the in silico 
analysis and experimental data, but each experiment 
must include stages to control off-target effects and 
efficacy of target transcript silencing.

Non-classical mechanisms  
of microRNA functioning

Studies of the last 10 years demonstrate the 
significant role of non-canonical mechanisms of 
microRNAs in the regulation of cellular processes [4, 7, 
68]. However, this area remains largely unexplored.

In addition to the fact that microRNAs located in the 
cytoplasm execute translational repression, their ability 
to activate translation when binding non-polyadenylated 
mRNAs was shown [69, 70]. The miRISC components 
were also found to be localized in several subcellular 
compartments, including the rough endoplasmic 
reticulum [71], processing P-bodies [72], stress granules 
(SG) [73], trans Golgi network, early/late endosomes, 
multivesicular bodies (MVB) [74], lysosomes [75], 
and mitochondria [76, 77]. In 2004, Meister et al. [78] 
identified the first microRNA (microRNA-21) in the 
nucleus. About 20% of mature microRNA-21 isolated 
from the Hela cells were distributed in the nucleus. 
Hwang et al. [79] reported that human microRNA-29b 
is predominantly localized in the nucleus of mitotic 
cells. Thus, both microRNAs and individual components 
of the RISC complex can freely circulate between 
the cytoplasm and the nucleus, penetrating into the 
nucleus and binding to proteins of the karyopherin 
family, in particular exportin-1 XPO1, importin-8 IPO8, 
karyopherin β KPNB1 and XPO5, subject to availability 
of a nuclear localization signal (NLS) and a nuclear 
export signal (NES). The RISC components such as 
TNRC6A and DICER contain NLS and translocate from 
the cytoplasm to the nucleus by binding to IPO8 and 
KPNB1, respectively [80–82]. AGO2 does not contain a 
classical NLS, but IPO8 colocalizes with AGO2 in human 
and mouse cells, with only microRNA-loaded AGO2 
translocating into the nucleus. Once in the nucleus, 
AGO2 is involved in repair of double-strand cuts [83] 
as well as in regulation of the chromatin remodeling 
complexes functioning [84, 85]. When it enters the 
nucleus, AGO1 binds to RNAPII and the promoters of 
actively transcribed genes and regulates the expression 
of genes that participate in oncogenic pathways such 
as cell cycle progression, growth, and survival [86, 87]. 
AGO1 and AGO2 can regulate alternative splicing by 
inducing H3K9me3 at variant gene regions, which 
results in the RNAPII inhibition and spliceosome 

recruitment [88]. Analysis of the microRNA circulation 
between the nucleus and the cytoplasm revealed that 
the nuclear and cytoplasmic fractions of microRNAs 
are not equally enriched. The duration of microRNA 
presence in the nucleus correlates with the number 
of predicted complementary targets in it. Moreover, 
microRNA effector complexes in the nucleus have a 
significantly lower molecular weight compared to the 
cytoplasmic ones [89].

Further, we shall consider some examples of 
the microRNAs functioning in the nucleus, such 
as regulation of the histone code, interaction with 
promoters, enhancers and transcripts. MicroRNAs 
are powerful epigenetic regulators as they control a 
large number of transcripts responsible for chromatin 
rearrangements [90]. MicroRNAs can also regulate 
the activity of enhancers by means of translational 
repression of enhancer-binding proteins, as it is shown 
for C/EBP α, β (transcription factors that are key 
regulators of glucose and lipid metabolism in the liver), 
microRNA-21 and microRNA-155 [91, 92]. It is worth 
noting that microRNAs also directly bind to and regulate 
gene enhancers (NamiRNAs) to activate transcription 
[93]. Studies in cell lines [94] identified >300 microRNA 
loci in genomic regions with active enhancer markers, 
such as DNAse I hypersensitive sites, histone H3 Lys 27 
acetylation modification (H3K27ac), and recruitment of 
the p300/CBP coactivator complex. A recent study [95] 
demonstrated the role of microRNA-492 as a trigger of 
enhancers in pancreatic cancer development.

In the context of liver cell populations, non-canonical 
functions of microRNAs are still underexplored. They 
may indirectly participate in chromatin remodeling by 
means of translational repression of key participants of 
this process. MicroRNA-885-5p, which is recognized 
as a marker for HCC progression, is an example of 
that. Zou et al. [96] revealed an increase in the level 
of H3K4me3 histone, which is a marker of transcriptional 
chromatin accessibility. The authors believe that the 
effect is associated with decondensation of the TIGAR 
gene promoter and increase in its transcription.

Another mechanism of transcription regulation 
by microRNAs is formation of a complex of 
microRNA-589-5p with AGO2 and GW182 in the 
nucleus. The complex directly binds to the promoter 
of cyclooxygenase-2 (COX-2), thus activating its 
transcription [97] and promoting development of 
liver fibrosis and the HCC progression [98–100]. 
MicroRNA-552 regulates the cytochrome P450 
(CYP2E1) expression at the transcription and translation 
levels. MicroRNA-552 interacts with a cruciform structure 
in the promoter region of the cytochrome, which prevents 
binding of the transcription factors SMARCE1 and RNA 
of polymerase II [101].

By binding to the TATA box promoter, microRNA 
let-7i can activate transcription of the IL2 gene, making 
the assembly of the initiation complex easier and 
attaching the TFIID, TFIIA, TFIIB, TFIIE, and TFIIF 
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transcription factors [102]. Moreover, it was established 
that the expression of FOXP3, a key transcription factor 
for formation and development of T-regulatory Treg 
lymphocytes, is regulated similarly. It was established 
that IL-2/STAT5 signal transduction increases the 
FOXP3 expression not only in the classical way, but 
also by enhancing the expression of the microRNA-4281 
precursor gene, which, by binding to the TATA-Box of 
the FOXP3 gene, additionally activates its transcription 
[103]. Kurt et al. [104] demonstrated the role of 
IL2-mediated Treg recruitment to reduce inflammatory 
damage in the CCl4 model of toxic liver damage.

During the transcription of the host gene, nuclear 
microRNAs can also form a functional positive feedback 
loop. For example, microRNA-483-5p, encoded in the 
IGF2 gene, can transcriptionally increase its expression, 
which results in the HCC increased progression in vivo 
[105].

Besides protein-coding genes, nuclear microRNAs 
also regulate biogenesis of non-coding RNAs at the 
transcription level. In particular, MALAT-1 is a highly 
conserved lncRNA, which plays a regulatory role in 
regenerative processes and liver diseases, including 
fibrosis, steatosis, and liver cancer [106]. It was 
reported that microRNA-9 can bind to AGO2 in the 
nucleus and regulate the MALAT-1 transcription [107]. 
Moreover, nuclear microRNAs can also interact with 
other pri-microRNAs and regulate biogenesis of the 
corresponding microRNAs. For example, microRNA-709 
includes 19 nucleotides that are completely 
complementary to the pri-microRNA-15a/16-1 
sequence. MicroRNA-709 suppresses the processing 
of pre-microRNA-15a/16-1 from pri-microRNA-15a/16-1 
and finally reduces the level of mature microRNA-
15a/16-1, which results in cell apoptosis [108].

It was found in the study [109] that microRNA-122 
in the nucleus binds to a 19-nucleotide UG-
containing recognition element in the basal region of 
pri-microRNA-21 and prevents the Drosha DGCR8 
microprocessor from converting pri-microRNA-21 into 
pre-microRNA-21. This mechanism is important for cell 
growth and proliferation because microRNA-21 regulates 
programmed cell death protein 4 (PDCD4), which is a 
tumor suppressor. Therefore, this non-classical action of 
microRNA-122 explains its proapoptotic effect.

Role of microRNAs in maintaining homeostasis 
and development of liver pathology

At present, there are several large studies aimed at 
identification of microRNAs specifically expressed in the 
liver. These studies consider the diversity of secreted 
and intracellular microRNAs both at the organ and 
specific cell levels.

MicroRNAs regulating liver metabolism
Multiple reviews highlight the role of microRNAs 

in regulating energy metabolism and detoxification 

function of the liver, as well as their contribution to 
development of various pathologies [110–116]. In 
their recent review, Gonсalves et al. [117] assessed 
the impact of differential expression of microRNAs on 
metabolism of lipids, carbohydrates and development 
of insulin resistance, fatty liver disease, as well as the 
role of the liver-derived microRNAs in development of 
cardiovascular pathologies.

A large number of studies are focused on the search 
of microRNA patterns specific to tissues and cell types, 
as well as on identification of its role in homeostasis and 
pathology development. A classic example of a tissue-
specific microRNA is microRNA-122, which takes over 
70% of the liver miRNome [118], but the increased levels 
of this microRNA are also associated with development 
of metabolic syndrome, and diabetes in particular, and 
the overall risk of mortality in patients with heart failure 
[119, 120]. Despite the fact that microRNA-122 is 
expressed predominantly by liver cells, overexpression 
of microRNA-122 in cardiomyocytes was demonstrated; 
it promotes cardiomyocyte apoptosis and development 
of multiple cardiac pathologies [121]. Over 120 targets 
were annotated for microRNA-122 [122], they are 
associated with a wide range of cellular processes. 
MicroRNA-122 plays a key role in maintaining liver 
homeostasis as it modulates the expression of the Cyclin 
G1, ADAM10, IGF1R, SRF, and Wnt1 proteins [123], 
and regulates hepatocyte differentiation by targeting 
components of the Hippo signaling pathway [124].

Besides microRNA-122, transcriptome profiling 
identified a total of 277 microRNAs expressed in the liver, 
166 of which were expressed in all analyzed samples, 
including microRNA-16, microRNA-27b, microRNA-30d, 
microRNA-126, and several members of the let-7 
family [125]. Various studies also described the role 
of differentially expressed microRNAs in development of 
pathologies. For instance, hepatocyte-specific functions 
were described for microRNA-155 in the context of 
alcoholic liver disease and a partial hepatectomy model 
[126, 127], as well as for microRNA-192 in acute liver 
damage and liver fibrogenesis mediated by HCV 
infection [128].

MicroRNAs involved in regulation of stellate cells, 
which produce extracellular matrix of the liver, were 
identified. Activation of proliferation and synthetic activity 
of stellate cells is mediated by microRNA-130 through 
the sirtuin 4 (SIRT4) repression [129], and microRNA-21 
by activation of the PTEN/Akt signaling pathway [130]. 
TGF-β-induced activation of microRNA-199 and 
microRNA-200 indirectly advances liver fibrosis by 
increasing the expression of profibrotic genes (e.g., 
collagens, matrix metalloproteases MMP) [131]. Some 
microRNAs have an antifibrotic effect by suppressing 
the stellate cells activation and blocking the expression 
of the extracellular matrix specific components. For 
instance, microRNA-29 and microRNA-19b suppress 
the expression of the transforming growth factor 
receptor beta II (TGFβRII), thus reducing the stellate 
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cells activation [114, 132]. Similar to microRNA-29, 
the main regulator of fibrosis [133], members of the 
microRNA-17–92 cluster (including microRNA-19b [134]) 
are involved in the control of stellate cell activity and liver 
regeneration in a great extent [135].

In contrast to the widely explored microRNAs of 
hepatocytes and stellate cells, data on specific functions 
of microRNAs in Kupffer cells and cholangiocytes are 
not numerous. It was suggested that microRNA-155 
is activated in infiltrating and resident macrophages 
(Kupffer cells) under alcohol exposure, which 
promotes development of inflammation and fibrosis by 
regulation of the TLR4/NF-κB, Keap1/Nrf2 pathways, 
and this ultimately results in steatosis, hepatitis and 
cirrhosis [126, 127, 136]. MicroRNA-223, in addition 
to maintaining lipid homeostasis, regulates activation 
and polarization of immune cells, which is discussed 
in detail in the review [137]. MicroRNA-223 promotes 
acute neutrophil response by targeting IKK-α 
expression in acetaminophen-induced acute toxic liver 
damage [138].

In general, microRNAs actively regulate energy 
metabolism in liver cells. They maintain mitochondrial 
homeostasis; violation of regulation leads to 
mitochondrial dysfunction [139]. A complex regulatory 
network of microRNAs maintains liver homeostasis, 
ensures response to stress impact, and coordinates 
various molecular cascades. Below are several 
examples illustrating the role of microRNAs at various 
levels of regulation in liver cells. Sirtuins (SIRT1–
SIRT7) play key roles in energy/lipid metabolism, 
oxidative stress, inflammatory response, mitochondrial 
homeostasis, autophagy, and necroptosis by regulating 
multiple signal transduction pathways [140–143]. 
Despite the large number of microRNAs identified as 
regulators of sirtuins in various tissues, there is little 
data about their effect on liver sirtuins. SIRT6, like 
SIRT1, is predominantly localized in the nucleus, where 
it is involved in regulation of glycolysis and triglyceride 
synthesis, as well as β-oxidation of fatty acids [143]. It 
was demonstrated [144, 145] that the microRNA-33a/b 
group negatively regulates the SIRT6 expression in 
liver cells. It is of interest that microRNA-122 also has 
a binding site in the 3’ non-coding region of SIRT6 and 
mediates its negative regulation in adventitial fibroblasts 
and liver, where they co-regulate fatty acid oxidation 
[146, 147].

The main deacetylase in mitochondria, SIRT3, is 
involved in all aspects of mitochondrial metabolism, 
as well as in mitochondrial biogenesis and dynamics, 
protecting against ROS and regulating the tricarboxylic 
acid cycle. In addition to easing mitochondrial stress, 
SIRT3 can trigger mitophagy by activating FOXO3a 
[143]. It was established that microRNA-34a-5p [148, 
149] and microRNA-421 (which significantly increases in 
case of NAFLD [150]) can directly or indirectly regulate 
SIRT3, thus suppressing its gene expression and protein 
levels in the liver. Moreover, microRNA-210 targets and 

suppresses the iron-sulfur cluster assembly enzyme 
(ISCU), which changes the NAD+/NADH ratio, indirectly 
affecting SIRT3 [151].

SIRT1 is part of numerous metabolic pathways such 
as gluconeogenesis, glycolysis, fatty acid oxidation 
and synthesis, oxidative phosphorylation or nitrogen 
metabolism, as well as of several fundamental 
and homeostatic processes such as mitochondrial 
biogenesis, inflammation, apoptosis, or oncogenesis 
[142]. SIRT1 is regulated by microRNA-19b [152], 
microRNA-22 [153], and microRNA 449a [154].

One of the sirtuin functions is deacetylation, which 
is required for activation of the PGC1α protein being 
the main controller of mitochondrial biogenesis, 
which plays a vital role in regulation of cellular energy 
metabolism [155]. PGC1α was identified as a target 
gene for microRNA-871-5p [156], microRNA-29c [157] 
in hepatocytes. It was demonstrated that NAFLD is 
characterized by a decrease in the levels of mRNA 
and the PGC1α protein, as well as by impaired 
binding to the promoters of the nuclear respiratory 
factors NRF1 and NRF2 [158], which define the 
expression of many nuclear genes that encode proteins 
targeting mitochondria, such as DNA polymerase γ 
(POLG), DNA helicase (Twinkle). These proteins are 
required for mtDNA replication and mitochondrial 
transcription factor A (TFAM) [159]. For instance, 
overexpression of microRNA-378a-3p suppressed 
NRF1, promoting accumulation of lipids and violation of 
fatty acid oxidation, which resulted in hepatosteatosis 
aggravation [160, 161].

Guo et al. [162] demonstrated the role of 
microRNA-199-5p in regulation of glycolysis in 
the HCC cells. Suppression of microRNA-199-5p 
expression by hypoxia-induced factor-1α promoted 
tumor progression within the Warburg effect. The 
direct target of microRNA-199-5p, microRNA-885-5p 
[163], and microRNA-125b [164] in hepatocytes is 
hexokinase 2 (HK2), which catalyzes the first irreversible 
stage of glycolysis. A shift in energy metabolism 
towards glycolysis is also influenced by an increase in 
pyruvate dehydrogenase kinase 4 (PDK4) [165, 166], 
which in turn makes the tumor more aggressive, but 
reduces the efficiency of liver regeneration in a partial 
hepatectomy model [167, 168]. The regulation of PDK4 
in the liver is mediated by microRNA-9-5p [169] and 
microRNA-129-5p [170], and microRNA-155 regulates 
PDK4 by the C/EBPβ pathway [171].

Change of the redox state is an important basis for 
many liver diseases. The redox state varies with the 
progression of inflammatory, metabolic, and proliferative 
liver diseases. In the mitochondria and endoplasmic 
reticulum of hepatocytes, enzymes of the cytochrome 
P450 family participate in the reactive oxygen species 
(ROS) production. Under appropriate conditions, 
cells initiate specific molecular cascades that control 
the level of oxidative stress and maintain the balance 
between oxidative and antioxidant components [172]. 

D.S. Kozlov, S.A. Rodimova, D.S. Kuznetsova



СТМ ∫ 2023 ∫ vol. 15 ∫ No.5   61

reviews

The redox-sensitive transcription factor Nrf2 is a 
cellular redox sensor, which, with the ROS levels 
increase, promotes the transcription of genes that 
protect cells and tissues from oxidative stress. Genes 
regulated by NRF2 by means of antioxidant response 
elements (AREs) include ROS-related factors involved 
in glutathione metabolism, reduction of the oxidized 
protein thiol groups, and NADP-producing enzymes, 
which are required for medicine-metabolizing enzymes 
and antioxidant systems [173]. In the context of liver 
pathology, NRF2-mediated cytoprotective responses 
prevent the development of various diseases of this 
organ, including alcoholic and non-alcoholic liver 
diseases, viral hepatitis, fibrosis, and HCC. The NRF2 
activity is regulated in the liver by several microRNAs, 
in particular, microRNA-27a, microRNA-142-5p, 
microRNA-153, and microRNA128 [174]. Regulation of 
the NRF2 stability is performed by microRNA-200a and 
microRNA-125b-5p, targeting KEAP1, which facilitates 
the NRF2 degradation and increased oxidative distress 
in fibrosis and lipid disorders [175, 176]. Moreover, 
microRNAs are actively involved in regulation of other 
components of the response to oxidative stress in the 
liver [177, 178].

Similar to oxidative stress, endoplasmic reticulum 
stress (ER stress) is an important part of the liver 
diseases pathogenesis [179–181]. Moreover, these 
conditions are closely linked [182–184]. For instance, 
NRF2, which is a key participant in the response to 
oxidative stress, may contribute to protection from ER 
stress by activating SIRT3 [185]. Lipid metabolism 
violation leads to oxidative and ER stress. ER stress 
triggers activation of three transmembrane ER sensors: 
IRE1α/β, PERK, and ATF6, which facilitate cell 
adaptation to stress [186].

Activated IRE1α results in degradation of 
microRNAs, such as microRNA-17, microRNA-34a, 
microRNA-96a, and microRNA-125b, which are related 
to cell protection under stress conditions, by means 
of post-transcriptional degradation of the apoptotic 
cell death regulator caspase-2, which is a thioredoxin-
interacting protein TXNIP, etc. [187–189]. The most 
studied of these microRNAs is microRNA-34a, the 
cleavage of which results in steatosis relief by means 
of activation of β-oxidation, fatty acid transport, and 
apoptosis (provided in detail in [190]). Activation of 
PERK induces the expression of microRNA-211, 
which in turn targets the chop/gadd153 promoter and 
attenuates its expression. This action allows the cell 
to restore homeostasis before triggering apoptosis 
[191]. MicroRNA-211 also suppresses the translation 
of circadian regulator Bmal1, which contributes to 
inhibition of the protein synthesis, which is required 
to restore cellular homeostasis [192]. It is currently 
believed that the IRE1 and PERK signaling branches 
are opposed and provide for cell fate determination 
in line with the severity of ER stress [193, 194]. The 
existing antagonism is not only due to the protein–

protein interaction. It is assumed that microRNA-30c-2, 
activated by PERK in combination with the inflammatory 
transcription factor NF-κB, targets the main effector 
of the IRE1 branch, the XBP1 transcription factor, 
regulates its turnover, and maintains the balance 
between pro-adaptive and non-adaptive processes in 
ER stress [195]. The ER stress relief in hepatocytes 
may be facilitated by microRNA-26a [196] by targeting 
the eukaryotic initiation factor eIF2α, which is also 
inhibited with activation of PERK. It should be noted 
that the expression of microRNA-26a is suppressed in 
models of non-alcoholic fatty liver disease and in the 
liver of patients with NAFLD. A recent study established 
that ATF6 is a direct target of microRNA-149 and 
may relieve ER stress in case of NAFLD by creasing 
inflammatory response and preventing caspase 12 
activation [197].

Therefore, microRNAs ensure regulation of a wide 
range of metabolic processes in various cell populations 
of the liver. Change of their expression has an adaptive 
function and is also part of the pathology progression 
mechanism.

Intercellular communication
Modern researchers consider extracellular vesicles as 

a key mediator of intercellular communication, as they 
conduct both local autocrine, paracrine, and endocrine 
regulation. Various aspects of biogenesis and functioning 
of extracellular vesicles under normal conditions and in 
various pathologies are being actively studied. Reviews 
[198–200] provide the current views on the biology of 
extracellular vesiclesin details.

There is no doubt now that molecules located in 
extracellular vesicles reflect pathological processes 
in cells [201–204]. Since the discovery of the possibility 
to transport mRNA and microRNA in vesicles in 2007 
[205], the regulatory role of nucleic acids has been most 
actively studied. In recent years, several databases and 
community-generated catalogs of molecules identified in 
extracellular vesicles were created, such as Vesiclepedia 
(Kalra et al. [206]), ExoCarta (Mathivanan and Simpson 
[207]), exRNA (Murillo et al. [208]), and exoRBase (Lai 
et al. [209]).

The study [210] identified that 210 out of 664 (34%) 
analyzed microRNAs are differentially expressed in 
extracellular vesicles from different types of cells, which 
corresponds to the views on specific microRNA profiles 
and mechanisms of their distribution (sorting) typical 
for different cells. The authors also demonstrated that 
(depending on the cell type) certain microRNAs can be 
either preferentially exported or, vice versa, kept in the 
cell. Santangelo et al. [211] identified a microRNA sorting 
system in hepatocytes. The SYNCRIP protein mediates 
the transport of microRNAs with the hEXO (GGCU) motif 
into vesicles; GGCU was common to approximately 
60% of microRNAs, predominantly found in exosomes. 
The authors believe that this mechanism can work 
both independently and synergistically with other 
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mechanisms, for example, with the previously identified 
hnRNPA2B1-GGAG [212].

For some microRNAs, intracellular changes 
corresponded to the observed changes in microRNA 
concentrations in serum. Activation of microRNA-571 
in hepatocytes and stellate cells was accompanied 
by increased levels of this microRNA in the blood 
serum, which correlated with the liver fibrosis stage 
in patients, whereas lower levels of microRNA-652 in 
serum correlated with the decreased expression of this 
microRNA in monocytes and reflected the degree of the 
liver inflammation [213].

Asymmetrical sorting of microRNA-122 in the liver 
in case of NAFLD was also reported. MicroRNA-122 is 
a key regulator of lipid homeostasis in the liver [214], 
and its increase was identified in case of NAFLD 
development [215, 216]. The authors [217] found that in 
NAFLD there is an increase in the level of extracellular 
microRNA-122, but the level of the same microRNA in 
hepatocytes abruptly decreases. This may be a part of 
the regulatory mechanism described by O’Grady et al. 
[218]. According to their results, the HNRNPA2B1 protein 
can mediate the regulation of the cellular transcriptome 
by getting involved in packaging of microRNAs, mRNAs, 
and lncRNAs into vesicles, which allows the cell to avoid 
unwanted transcripts.

Besides extracellular vesicles, the microRNAs transfer 
is conducted by albumins [219], high-density lipoproteins 
(HDL) 5 to 12 nm in size, low-density lipoproteins 
(LDL) 18 to 25 nm in size, chylomicrons up to 1200 nm 
in size, which are wide-spread in blood circulation 
and probably are the predominant type of particles in 
plasma preparations [220–223]. HDL and LDL, like 
chylomicrons, can also transport microRNAs, and thus 
are important transporters of microRNAs in the blood 
flow [224, 225]. Considering the fact that the liver is one 
of the main sources of lipoproteins in the blood, one can 
conclude that the diagnostic potential of microRNAs 
transported by lipoproteins is enormous. However, the 
difficulty of conducting experiments on isolation and 
studying lipoprotein fraction separate from extracellular 
vesicles makes these studies extremely problematic.

Wagner et al. [226] analyzed microRNAs transported 
by blood lipoproteins. The results of the study show that 
HDL is richer in microRNAs compared with LDL. Here, 
the authors suggest that 8% (over 10,000 copies/μg) of 
circulating microRNA-223 are associated with HDL.

The first proof of biological functionality of microRNAs 
transported by HDL was presented in 2011 by Vickers 
et al. [227]. The authors showed that native HDL loaded 
with microRNA-375 or microRNA-223-3p mimics 
efficiently delivered these microRNAs into the cultured 
human hepatocytes with a decrease in the mRNA 
levels of two putative target genes of microRNA-223-3p 
in the background. They found that the transfer of 
lipoprotein-associated microRNA into the recipient cells 
was primarily dependent on the scavenger receptor B 
type 1 (SR-BI).

MicroRNAs and viral diseases

In case of viral infection, microRNAs act as regulators 
of viral replication, antigen presentation, and immune 
response. They can also cause a wide range of cytotoxic 
effects. Viruses not only cause aberrant expression of 
host microRNAs, but also encode their own microRNAs 
[228]. Encoding of microRNAs by viruses was first 
reported in 2004, when the first microRNAs of the 
Epstein–Barr virus were found [229]. Currently, 44 mature 
microRNAs are known to be encoded in the Epstein–Barr 
virus genome [230, 231]. Recent studies demonstrated 
availability of the viral microRNA CoV2-miR-O7a in 
coronavirus. Researchers assume that this microRNA 
regulates interferon signal transfer [232–234].

According to the WHO estimates, in 2015, 257 million 
people (3.5% of the population) lived with the chronic 
hepatitis B (HBV) infection; 2.7 million of them were 
coinfected with HIV (https://www.who.int/publications/i/
item/9789241565455).

Infection with HBV not only causes hepatitis, but also 
increases the risk of HCC by 100-fold [234]. However, 
the currently available data do not allow scientists to 
comprehensively describe the processes underlying 
malignant transformation.

The first microRNA of the HBV virus was identified 
quite recently, in 2017. HBV-miR-3 is located at 
nucleotides 373 to 393 of the HBV genome [235]. 
HBV-miR-3 targets a unique region of the HBV transcript 
with 3.5 thousand pairs. Later, the authors [236] found 
that this microRNA can enhance the interferon-mediated 
antiviral response, as well as promote the M1 
macrophages polarization and enhance the secretion of 
IL-6 by means of direct inhibition of SOCS5. HBV-miR-3 
binds to the 3’ region of the tumor suppressor PTEN 
mRNA, suppressing its translation, which facilitates 
tumor cells avoiding apoptosis and their increased 
proliferation [237]. Another microRNA encoded by the 
hepatitis B virus was discovered in 2022 by Loukachov 
et al. [238]. HBV-miR-6 is located between nucleotides 
255 and 325 of the HBV genome. The authors 
assume that it is involved in replication and release 
of viral particles, as the mRNA level of none of the 25 
potential targets identified by miRDB was changed by 
overexpression of HBV-miR-6, whereas its expression 
level correlated with the level of HBV DNA in the liver 
and the HBsAg surface antigen in plasma. Unlike the 
previously identified in hepatoma samples HBV-miR-3, 
HBV-miR-6 was found at earlier stages of disease 
development, which may indicate a switch in microRNA 
expression at different stages of disease.

Cellular microRNAs can also influence replication 
of viral genomes and regulate antiviral response. 
MicroRNA-122 is an example of such microRNA, it 
promotes replication of the HCV by protecting it from 
degradation and changing the viral RNA conformation, 
making the initiation translation site (IRES) accessible to 
enzymes [239–242].
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MicroRNAs in clinical practice:  
diagnostic and therapeutic capacities
MicroRNA-based diagnostics

Due to significant scope of accumulated knowledge 
about biological function of microRNAs and changes 
in microRNA during the development of various 
pathologies, microRNAs are currently being actively 
studied as a diagnostic, prognostic, and therapeutic tool 
for clinical practice. There are currently 509 results for 
the “microRNA” query in the ClinicalTrials.gov clinical 
trial database (https://clinicaltrials.gov), but only 35 of 
them contain liver-related key terms, though the vast 
majority of studies focus on liver-related diagnostics 
based on microRNAs. In their review, Kim and Croce 
[243] consider promising clinical trials of diagnostic 
panels and microRNA-based medicines for cancer 
treatment. The authors emphasize that the pleiotropy 
of microRNA action is both an obstacle to development of 
microRNA therapy due to unexpected off-target effects, 
and a key advantage as carcinogenesis is characterized 
by complex underlying epigenetic changes. Liver 
diseases are no exception to this. In a recent review, 
Zhao et al. [244] thoroughly reviewed biological function, 
participation in pathogenesis, and diagnostic potential of 
microRNAs of extracellular vesicles secreted by different 
types of liver cells.

MicroRNAs can act as new biomarkers for various 
pathologies because they are very stable and easy to 
detect in peripheral blood. Studies on gene expression 
profiling identified changes in microRNA expression in a 
number of human diseases. The complexity of microRNA 
regulation does not allow to use only one microRNA 
as a marker of a particular disease. Huge efforts are 
invested into finding panels of microRNAs that could 
help diagnose a disease with high accuracy, track the 
disease progression, and adjust the treatment regimen 
accordingly. Multiple microRNA panels are being actively 
developed to diagnose HCC [245, 246], fibrosis [244, 
247], steatosis [190, 248], acute liver transplant rejection 
[249], and other pathologies.

Experiments to identify microRNA biomarkers typically 
include a discovery phase and a validation phase. 
During the discovery phase, one hundred microRNAs 
are analyzed in parallel to identify candidate biomarkers. 
Due to high cost of high-throughput experiments, the 
number of people involved in such studies is often too 
small, which can easily result in false positive and false 
negative findings. During the validation phase, a small 
number of identified biomarker candidates are measured 
in a large sample of test and control samples, typically 
using quantitative PCR (qPCR). Although qPCR is a 
sensitive method to measure microRNAs in blood, the 
design of experiment and analysis of qPCR data remain 
a weak point in many studies. Omitting important stages 
when planning and analyzing qPCR in the experiment 
or inappropriately performing thereof can lead to serious 
systematic errors. Detailed recommendations related to 

planning and conducting experiments to identify RNA 
and microRNA biomarkers are provided in [250–252].

MicroRNA-based therapeutic approaches  
to treatment of liver diseases

Manipulation with the microRNA expression level 
can simultaneously influence a wide range of clinically 
important targets, thus opening promising therapeutic 
prospects. Activities on development of microRNA-based 
therapy can be divided into two large groups: microRNA 
replacement therapy (enhancement or restoration of 
the expression of endogenous microRNAs acting as 
suppressors of pathology) and microRNA suppression 
(inhibition of the expression or functional blocking of 
microRNAs acting as drivers of pathology). Figure 2 
demonstrates methods of nucleic acid delivery and main 
therapeutic strategies on the basis of microRNAs.

Change of the level of microRNA expression is usually 
conducted with the use of nucleic acids, including 
oligonucleotide-based microRNA inhibitors (anti-miRs), 
microRNA sponges, etc., as well as microRNA agonists: 
synthetic microRNAs (miRNA mimics), recombinant 
expression vectors that carry sequences encoding 
microRNAs, etc. One shall specifically emphasize 
therapeutic approaches based on the use of bioactive 
substances and ligands that affect the transcription, 
processing and functioning of microRNAs [253]. 
In their review article, Doghish et al. [254] provide 
examples of microRNAs considered as therapeutic 
targets for inhibitors or replacement therapy for various 
liver diseases. In their meta-analysis, Zhu et al. [255] 
mentioned 96 studies that examined therapeutic effects 
of 56 various microRNAs on NAFLD/NASH. The authors 
note the role of microRNA-34a and microRNA-21, as 
well as the microRNA-130 and microRNA-146 families in 
development of liver pathologies.

Decrease of microRNA activity is mainly achieved by 
using microRNA sponges, antisense oligonucleotides 
(ASOs) masking microRNAs, or antisense 
oligonucleotides targeting microRNAs (AMOs) [256]. 
MicroRNA sponge technique allows triggering the 
expression of mRNA molecules with multiple binding 
sites for the target microRNA, which further act as a 
recall or sponge to capture targeted microRNA. Thereby, 
the endogenous target mRNA is preserved and capable 
of normal functioning [257]. Like endogenous microRNA 
sponges, the introduced structures can be linearized and 
circularly closed (like endogenous circular RNAs), which 
increases their stability and reduces off-target effects 
[258, 259]. A significant limitation of this technique 
is its high cost. Often, viral vectors are also must be 
used for their delivery into the cell, as well as selection 
of promoters that ensure high expression in a specific 
cell type. Moreover, such structures are characterized 
by high immunogenicity and cytotoxicity. However, 
microRNA sponges can carry numerous microRNA 
binding sites, thus allowing simultaneous regulation of a 
large number of targets.
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Antisense oligonucleotide technique that masks 
microRNA targets (miR-mask, also known as the 
BlockmiR, target protectors or target site blockers) is 
based on the reverse approach: instead of blocking 
a target microRNA, these molecules protect the 
mRNA, functioning of which one wants to keep. 
Moreover, miR-mask technique targets microRNAs in 
a gene-specific manner, meaning that oligonucleotides 
are designed to protect specific sites of the mRNA 
and, correspondingly, the expression of the considered 
protein. This allows to keep other transcripts regulated 
by microRNAs unaffected, which helps reduce off-target 
effects of therapy [260]. One of potential obstacles to the 
use of miR-mask may be availability of multiple binding 
sites for the microRNA seed region in the encoding and 
5’ regions of mRNA.

This approach can be further combined with 
microRNA sponges (Sponge miR-mask technique) to 
block access of several microRNA members to their 
binding sites on the mRNA, which results in activation 
of protein expression. Sponge miR-mask is designed to 
bind by means of partial complementarity to the 3’UTR 
of all target germ site mRNAs of the microRNA family of 
8 nucleotides. However, Sponge miR-mask technique 
has poor gene specificity, as these molecules can block 
the expression of all genes associated with the same 
target binding site of the whole microRNA family [261].

The most popular approach to correct aberrant 
microRNA expression is based on synthesis of antisense 

oligonucleotides with a microRNA-complementary 
sequence. To improve biostability and affinity of 
binding to the target microRNA, anti-miRs need to be 
chemically modified. Modifications include introduction 
of phosphorothioate bonds into internucleotide bonds, 
modification of the 2’-O-methyl RNA sugar (2’OMe) in 
antagomiRs, or introduction of locked nucleic acid (LNA) 
bases in LNA-anti-miR. Anti-miRs with lower affinity 
chemical modifications, like 2’OMe, induce microRNA 
degradation, whereas anti-miRs with chemical 
modifications increasing target affinity, such as LNA, do 
not induce microRNA degradation but inhibit the target 
microRNA using a steric blocking mechanism [262]. 
While antagomiRs are conjugated to cholesterol, which 
facilitates their cellular uptake, LNA-anti-miRs have 
a phosphorothioate backbone, thus ensuring greater 
stability, high binding affinity, and good pharmacokinetic 
properties [263]. Miravirsen (anti-microRNA-122) is an 
antisense LNA oligonucleotide to microRNA, which was 
a first to be used in clinical trials as a targeted medicine 
for the HCV treatment [264].

MicroRNA replacement therapy is aimed at 
restoration of the microRNAs level, lowering of which 
contributes to the pathology development. Synthetic 
double-stranded microRNAs (miRmimic) carrying 
various chemical modifications, some of which are 
covered below, can be used as exogenous microRNAs. 
MicroRNAs can be delivered into the cell in the form of a 
nuclear transcribed vector, which then goes a classical 

Figure 2. Nucleic acid delivery ways and main microRNA-based therapeutic strategies
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pathway of microRNA biogenesis from the pri-microRNA 
stage [265] or pre-microRNA stage [266]. Moreover, 
small interfering RNAs (siRNAs), acting like microRNAs 
with high complementarity to the target, have a scarcer 
repertoire of targets compared to canonically paired 
microRNAs due to complementary regions outside the 
seed region, which also allows AGO2 to cleave mRNA 
within endonuclease activity, providing a knockdown 
efficiency of over 80% [267]. Despite the simplicity of 
design and a wide range of targets of microRNA mimics, 
siRNAs have fewer off-target effects, which is their 
advantage in clinical trials.

It should be noted that double-stranded microRNA 
mimics can potentially induce a nonspecific interferon 
response through TLR-dependent and TLR-independent 
pathways [268]. Another potential problem of microRNA 
replacement therapy is the problem of administering 
supraphysiological concentrations of microRNA trying 
to restore microRNA levels, which leads to uptake into 
non-target tissues, as well as inclusion of passenger 
strands in RISC, and accumulation of microRNA 
modification products. Therefore, targeted delivery 
of microRNA mimics to the appropriate cell or tissue 
type is important to prevent adverse side effects of this 
therapeutic approach.

Delivery systems
Bioactive molecules acting as therapeutic agents are 

delivered by means of passive and targeted delivery. 
Passive delivery is determined by its intrinsic properties 
and anatomy of the tissue or cell type. Specific ligands 
or recognition molecules for passive medicine delivery 
are not required [269]. A function of the mononuclear 
phagocytic system (MPS) is to capture and remove 
foreign bodies from the circulatory system to protect the 
body from harmful effects. Consequently, microRNAs, 
provided they are stable enough, tend to accumulate 
through passive delivery in the liver, spleen, lymph 
nodes, and kidneys, which are filtering organs of the 
MPS [270].

Unlike most other tissues, the liver does not have 
an impermeable basement membrane. Therefore, 
in the absence of obstacles such as aggregation or 
protein binding [271], most microRNA carriers exhibit 
fast passive accumulation in the liver after systemic 
administration. Passive targeting to liver cells is generally 
determined by the diameter of the fenestrae formed by 
liver sinusoidal cells, which provide selectivity for Kupffer 
cells and sinusoidal cells (>100 nm) on the one hand, 
or hepatocytes and stellate cells (<100 nm) on the other 
hand. In tumor tissues, the nanoparticles accumulation 
can be significantly eased due to the typical permeable 
tumor vasculature and the increased distance between 
vascular endothelial cells [272].

Despite the effectiveness of passive uptake of 
nanoparticles by the liver, many off-target effects 
resulting from accumulation in the kidneys, lungs, 
spleen, and other organs create the need for a more 

specific targeted delivery. There are several approaches 
to active targeted delivery of microRNAs that include 
conjugation, virus-associated delivery, and modified 
nanoparticles. Though there is experimental evidence 
that virus-associated microRNA delivery approaches are 
effective in cancer treatment, safety concerns regarding 
the use of viruses currently limit their clinical application, 
and other non-viral delivery systems are considered 
more promising [273].

The conjugation method, in which lipids or ligands 
targeting cellular receptors directly bind to microRNAs, 
is one of the popular approaches to microRNA delivery. 
The liver actively uptakes a wide range of high and low 
molecular weight compounds, which allows to highly 
efficiently use microRNAs connected to various ligands. 
One can have asialoglycoprotein receptor 1 (ASPGR1) 
as a specific targeting site in the liver; this receptor is 
a transmembrane protein expressed predominantly 
on the hepatocyte membrane [274]. Specific binding 
of N-acetylgalactosamine (GalNAc) to ASPGR1 
leads to rapid endocytosis. As of August 2023, four 
GalNAc-conjugated siRNAs (givosiran, lumasiran, 
inclisiran, and vutrisiran) produced by the Alnylam 
Pharmaceuticals biopharmaceutical company were 
approved for clinical application. Givosiran is designed to 
inhibit hepatic δ-aminolevulinic acid synthase 1 (ALAS1) 
to treat acute hepatic porphyria caused by disruption of 
ALAS1 expression, which can result in accumulation 
of toxic metabolites. Lumasiran is used to treat primary 
hyperoxaluria type 1 by inhibiting the expression of 
hydroxy acid oxidase 1 (HAO1), which results in the 
decreased oxalate levels in the liver. Inclisiran reduces 
the level of expression of hepatic protein convertase 
subtilisin/kexin type 9 (PCSK9), which results in a 
decrease in the LDL cholesterol levels. This medicine is 
used to treat hypercholesterolemia, characterized by the 
increased levels of LDL cholesterol, which is associated 
with cardiovascular risks. Vutrisiran targets transthyretin 
(TTR) mRNA and reduces the levels of TTR protein in 
blood; this protein is primarily produced by the liver. The 
medicine is used to treat amyloid-transthyretin-mediated 
(ATTR) amyloidosis. Willoughby et al. [275] 
demonstrated that in case of 50% decrease in ASPGR 
expression, the efficiency of GalNAc-siRNAs conjugates 
uptake is maintained; it makes one assume that 
there are independent mechanisms of internalization 
available and this medicine may be used to treat 
pathologies accompanied by a decrease in ASPGR in 
the liver, including congestive heart failure, alcoholic 
liver cirrhosis, Laënnec’s cirrhosis of the liver, biliary 
cirrhosis, as well as liver neoplasms and HCC. GalNAc 
may also be additionally linked to other functional 
groups. For instance, Arrowhead Pharmaceuticals used 
a combination of GalNAc and carboxydimethylmaleic 
anhydride to create a “proton pump” and release siRNAs 
from endosomes, thus protecting them from degradation 
and promoting their release into the cytoplasm [276]. 
Moreover, cholesterol, lipids, vitamin E (α-tocopherol), 
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and other substances that mediate preferential uptake by 
a certain type of liver cells which are used as conjugates 
for microRNA delivery to the liver (the list of substances 
is given in reviews [272, 277]).

Non-viral carriers for microRNA delivery include 
liposomes, micelles, dendrimers, and the most 
commonly used lipid and polymer nanoparticles. 
Nanoparticles usually include a cationic component 
that forms complexes with anionic microRNAs, 
thus protecting them from degradation and allowing 
interaction with cell membranes to provide for cellular 
uptake. Lipid-based nanoparticles are the most common 
class of nanomedicines approved by the FDA or EMA 
regulators. These carriers have many advantages, 
such as high biocompatibility, ease of production, high 
encapsulation efficiency, and flexibility of use, which 
are important for their clinical application. Liposomes 
were first introduced into clinical practice in the 1990s 
as containers loaded with doxorubicin (Doxil) and had 
a great success in cancer treatment [277]. Then, the 
most stable solid lipid nanoparticles and nanostructured 
lipid carriers were developed [278]. Cationic lipids 
with hydrophilic heads and hydrophobic tails form 
a complex with the anionic nucleic acid, developing a 
lipoplex. Cationic lipoplexes may include auxiliary 
lipids that facilitate targeting to a specific cell type. For 
example, galactose-modified aromatic lipids are used 
to target hepatocytes [279]. Moreover, lipoplexes are 
non-immunogenic and are available as many commercial 
products, such as Lipofectamine RNAi-MAX, SiPORT 
(Invitrogen, USA), SilentFect™ (Bio-Rad, USA), and 
DharmaFECT (Dharmacon, USA). Interaction between 
the cationic lipids of the lipoplex and the anionic lipids 
of the endosomes provokes active lipid exchange and 
development of a gap, which nucleic acids use to enter 
the cytoplasm [280]. Unmodified cationic lipoplexes were 
used for microRNA delivery in vivo, but their efficiency 
was low [281]. Several modifications have been used 
to bypass this problem. Conjugation of the polyethylene 
glycol (PEG) functional group to cationic lipids helps 
avoid phagocytosis and agglutination with red blood 
cells, thus improving the overall efficiency of delivery to 
the liver [282, 283]. Furthermore, lipoplexes, like other 
nanoparticles, can be used for co-delivery of medicines. 
For instance, Xu et al. [284] used DOTAP lipoplexes for 
co-delivery of doxorubicin and microRNA-101 into the 
HCC cells. The main disadvantage of cationic lipoplexes 
is their nonspecific interaction with other proteins, which 
results in side effects and instability. This problem has 
been solved by using neutral lipoplexes to deliver 
microRNAs.

siRNA medicines are being developed based on lipid 
nanoparticles to fight fibrosis. ND-L02-s0201 contains 
a siRNA targeting heat shock protein 47 (HSP47), 
which is required for appropriate folding of procollagen 
in the endoplasmic reticulum. Lipid nanoparticles 
include a retinoid-conjugated targeting agent 
(di-retinamide-PEG-di-retinamide), which promotes the 

uptake of nanoparticles by target cells (liver stellate 
cells in liver fibrosis or lung myofibroblasts in pulmonary 
fibrosis) [285].

Polymer delivery methods often include using 
polyethylenimines (PEI), in which positively charged 
aminogroups form a complex with an anionic nucleic 
acid, thus protecting the RNA from degradation and 
allowing cellular uptake. Both linear and branched 
PEIs with low and high molecular weight are used 
as microRNA carrier systems [286]. However, low 
transfection efficiency and cytotoxicity make PEI 
unsuitable for clinical application. To overcome the said 
limitations, the authors of study [287] used the PEI 
fluoridation, which reduced its cytotoxicity and led to 
a more efficient accumulation of nanoparticles in the 
liver with less off-target accumulation in the lungs. 
Other polymers, such as polyethylene glycol (PEG) or 
poly-L-lysine (PLL), help improve its biocompatibility 
if these polymers are covalently merged with PEI, thus 
making it less toxic to cells [288]. 

A copolymer of polylactic acid (PLA) and polyglycolic 
acid, namely polylactide-co-glycolide (PGLA), is another 
biodegradable polyester approved by the FDA, which is 
used for delivery of anti-microRNA [289]. A study [290] 
showed that PGLA nanoparticles with a size of about 
270 nm are predominantly taken up by Kupffer cells. 
The PGLA hydrophobicity reduces the efficiency of 
its microRNA delivery. Dendrimers are highly ordered 
branched polymers that form a complex with nucleic 
acids based on ionic interactions. Positively charged 
synthetic polyadenoamine (PAMAM) dendrimers are 
biodegradable, characterized by higher transfection 
efficiency and lower cytotoxicity compared with other 
polymers. Wang et al. [291] in their study managed to 
successfully deliver intravenous injection of PAMAM 
and PEG dendrimers, a nanographene oxide bound 
to anti-microRNA-21, to target tumor tissues. PAMAM 
dendrimers were used to deliver short activating RNAs 
(saRNAs) to increase endogenous albumin production 
with a simultaneous reduction of the tumor burden in the 
liver [292]. Another approach is to use polymer micelles 
consisting of a hydrophilic and a hydrophobic polymer. 
For instance, doxorubicin and the tumor suppressor 
microRNA-34a were co-delivered into cancer cells within 
this strategy [293].

Delivery systems based on inorganic compounds
Inorganic compounds that are used to develop 

microRNA carriers primarily include gold, Fe3O4-based 
magnetic nanoparticles, and silica-based nanoparticles. 
These thiol- or aminogroup-functionalized nanoparticles 
can ensure stronger interaction with microRNA, 
thus easing its delivery [294]. In their article, Li et al. 
[287] considered the effect of modification of the 
gold nanoparticles surface with chitosan, PEG and 
PEI for entrapping by various cells and releasing of 
nanoparticles into the Disse space of the liver. Silica 
nanoparticles are thermostable, biocompatible, and have 
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a large surface area and pore size, making them suitable 
carriers for microRNAs and anti-microRNAs [295]. The 
advantage of magnetic nanoparticles is their targeted 
application using a magnetic field. Various modifications 
of magnetic nanoparticles can prevent nanoparticles 
aggregation in the magnetic field, as well as reduce 
their cytotoxicity. A nanocomplex consisting of Fe3O4 
nanoparticles and polymers, namely polyglutamic acid 
and PEI, demonstrating promising results in the in vivo 
delivery. In xenograft patients, systematic administration 
of this nanocomplex in combination with the routine 
chemotherapy with docetaxel suppressed tumor growth, 
thus improving its therapeutic potential [296]. Magnetic 
nanoparticles without coating modifications, as well 
as those coated with dextran, rutin, and methoxy-PEG 
phosphate, showed predominant accumulation in the 
liver and spleen [297].

Studies aimed at introduction of microRNAs into 
clinical practice are subject to general requirements to 
experiments, however, the current specifics introduce 
additional control stages that are required to maintain 
the experiment transparency. General principles of 
experiments and possible methods to identify target 
transcripts for small non-coding RNAs are provided 
in the review by Thomson et al. [298]. The design of 
the experiment with the use of antisense nucleotides 
and double-stranded RNAs is described in detail in 
the recommendations by Gagnon and Corey [299]. 
The recommendations are not exhaustive and are 
supplemented by various control stages depending 
on the specifics of the experiment. Nevertheless, key 
stages of microRNA therapy development include 
confirmation of the list of regulated transcripts under 
conditions, which are as close as possible to the 
required ones, identification of the cell physiological 
response to overexpression/knockout of the molecule 
under study, as well as confirmation of the effect not 
only by measuring the level of transcription, but also 
by conducting immunoprecipitation assays to detect 
changes in the levels of proteins under study. In case of 
using carriers of a different nature, one shall analyze the 
cellular uptake, the kinetics of molecules release from 
the carrier [300], as well as the cytotoxicity of the loaded 
carrier, as the interferon response can be triggered not 
only by the carrier, but also by the double-stranded RNA, 
as it was mentioned above.

Conclusion
At present, a large amount of knowledge about 

changes in the microRNA expression in various 
pathologies has already been accumulated, which allows 
to create diagnostic microRNA-based panels, but there 
are many unresolved issues towards the therapeutic 
use of microRNAs. Developing high-throughput analysis 
methods help to analyze interactions between various 
microRNAs and their targets within a cell, assess 
changes in the proteome, and create models of such 

interactions for further practical application. Critical 
role of microRNAs in regulation of cellular processes is 
out of question; moreover, a major part of the microRNA 
effects remains unexplored, as they do not fit within the 
canonical model of microRNA-mediated translational 
repression. Recent advances in development of small 
interfering RNA-based therapies to treat liver diseases 
provide great perspectives for the microRNAs use in 
treatment of more complex liver pathologies by means of 
a wider range of regulated targets.
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