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Brain–computer interfaces (BCIs) are a group of technologies that allow mental training with feedback for post-stroke motor recovery. 
Varieties of these technologies have been studied in numerous clinical trials for more than 10 years, and their construct and software are 
constantly being improved. Despite the positive treatment results and the availability of registered medical devices, there are currently a 
number of problems for the wide clinical application of BCI technologies. This review provides information on the most studied types of BCIs 
and its training protocols and describes the evidence base for the effectiveness of BCIs for upper limb motor recovery after stroke. The main 
problems of scaling this technology and ways to solve them are also described.
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Introduction

Brain–computer interface (BCI) is a technology that 
allows to convert data on the electrical or metabolic 
activity of the brain into control signals for an external 
technical device. In post-stroke rehabilitation, BCI 
is used to provide feedback to a patient during motor 
imagery training [1–3]. The scientific justification for 
this method has been the data on the positive effect 
of the motor imagery process on neuroplasticity 
due to activation of motor structures of the central 

nervous system (CNS) [4–8]. By providing feedback 
during motor imagery, the BCI systems enhance the 
effectiveness of such training sessions [9]. In general, 
training with the use of the BCI technology in patients 
after stroke includes the following processes: a patient 
is asked to mentally perform a movement of the 
paralyzed limb; the BCI technology using non-invasive 
sensors records brain signals accompanying the mental 
performance of the task; in real time, these signals are 
recognized and converted into a control command 
for an external device; the patient is provided with 
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feedback on the quality of the mental task performance 
using the external device [10].

To date, at least 20 randomized controlled trials 
(RCTs) on the use of BCI for upper limb motor recovery 
after stroke are known worldwide, and 11 systematic 
reviews, 8 of which are accompanied by a meta-analysis, 
have been published on this topic between 2019 and 
2023 [11–21]. Foreign and domestic manufacturers have 
developed several medical devices for use in clinical 
practice of post-stroke rehabilitation [22–25].

In Russia, clinical trials of BCI after stroke first began 
in 2011 at Research Center of Neurology (Moscow, 
Russia) [26, 27]. In a subsequent multicentre RCT, it was 
shown that a course of training with the BCI–exoskeleton 
complex improved the rehabilitation results of patients 
with focal brain damage in terms of hand motor 
recovery [28]. The proven technology was subsequently 
registered as a medical device and is currently used in a 
number of clinical centres [24, 29].

Despite the extensive evidence base and the 
availability of ready-made BCI technologies, there are 
currently some limitations to their widespread use in 
post-stroke rehabilitation, and further research and 
development is underway [30–37].

The aim of this review is to analyse scientific articles 
devoted to the study of the use of BCI technologies in 
post-stroke upper limb paresis, to outline the main 
problems and prospects for further development in this 
field.

Literature search methodology

Articles from peer-reviewed, full-text, open access 
scientific journals on the use of non-invasive BCIs for 
upper limb motor recovery after stroke were selected for 
analysis. The search query was formulated according 
to the rules of the MEDLINE bibliographic database: 

((brain–computer[tiab] OR brain–machine[tiab] OR neural 
interfac*[tiab]) OR “Brain–Computer interfaces”[Mesh]) 
AND stroke[mh] AND (upper extremity[tiab] OR hand[tiab] 
OR arm[tiab]). Additionally, a literature search was 
conducted in the eLIBRARY.RU system using the key 
words “brain–computer interface”, “neurocomputer 
interface”, “neurointerface”. The date of the search was 
July 3, 2023.

Varieties of brain–computer interface systems  
and their application after stroke

All BCIs used in research or in the practice of 
post-stroke rehabilitation have distinctive features (see 
the Figure). The training protocols and BCI models 
studied in RCTs differ in the control paradigm of the 
interface, the type of signal recorded, the online signal 
processing algorithm, and the type of external technical 
device for providing feedback.

Control paradigm. Patients are typically tasked to 
imagine the movement, i.e., to mentally recreate the 
kinaesthetic sensation of a particular action in a limb 
without actually performing it [28, 38–45]. However, 
several studies have used a different paradigm — the 
intention to perform certain movements [46–48]. During 
the performance of this paradigm, in contrast to motor 
imagination, a patient tries to move the paralyzed limb, 
which is accompanied by a multiple increase in the 
electromyographic response compared to rest [13, 49]. 
In doing so, the main types of movement were clenching 
the hand into a fist and/or opening the hand and, less 
frequently, isolated or multijoint movements of the 
fingers, wrist, forearm, and upper arm [13].

Control signals. Most RCTs used BCIs based on 
electroencephalogram (EEG) recording [11, 17], and 
only one used near-infrared spectroscopy (NIRS) 
to record brain activity signals [43]. EEG–BCIs are 
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the most accessible varieties of this technology. As a 
rule, the synchronization/desynchronization response of 
sensorimotor rhythm over the primary somatosensory 
and motor cortex areas, corresponding to the process 
of motor imagination, is used as the recorded signal in 
them. In NIRS–BCIs, the sources of brain activity can 
be several parameters: changes in the concentration of 
oxy-, deoxy-, or total haemoglobin at a depth of up to 
4 cm from the head surface [50]. To apply NIRS–BCIs, 
unlike EEG–BCIs, there is no need to use electrode 
gel, and the patient’s movements during training do not 
lead to serious signal distortions. This technology is less 
available than EEG–BCI and is therefore unlikely to be 
suitable for widespread use. However, a portable NIRS–
BCI system for home use has recently been proposed 
and tested on a small group of patients [51]. The 
application of this technology at home makes it possible 
to extend and prolong the rehabilitation program beyond 
the time-limited inpatient course.

Signal processing. Currently, there is no unified 
approach regarding signal processing algorithms in BCI 
systems. Many methods [52, 53] have been proposed 
and applied in various RCTs.

External technical devices. BCI algorithms convert 
brain signals into control commands for external 
technical devices that provide real-time feedback. 
An orthosis, robot, or exoskeleton arm in the BCI loop 
performs passive limb movement that the patient 
represents or attempts to perform. This kinaesthetic type 
of feedback has been used most often in previous RCTs, 
including in combination with visual feedback [28, 38, 39, 
41, 45, 47, 48, 54]. In a number of studies, only visual 
feedback in the form of an abstract signal on a computer 
screen was used [43, 44]. Some authors consider the 
functional electrical stimulation (FES) in the BCI loop 
to be physiologically the most preferable. During FES, 
more motor and sensory axons are depolarized, more 
powerful signals from muscles spindles and Golgi 
tendon organs are delivered to the CNS, and pulses 
from the muscle spindles can activate motor neurons 
simultaneously with the descending cortical command 
when representing a movement, thus inducing Hebbian 
association [13, 55–58]. The efficacy of BCI with FES 
has also been studied in several RCTs [42, 46, 59–61].

Training courses. In the RCTs conducted, the 
frequency of BCI training sessions ranged from 2 [46] 
to 5 times a week [28, 45, 47, 54, 59, 60], and the total 
course duration ranged from 2 [28, 43] to 8 weeks [42], 
but most often was 4 weeks [38, 44, 45, 47, 59–61]. The 
total number of training sessions included from 6 [43] to 
24 sessions [42], and the total training exposure ranged 
from 2 [43] to 27 h [39, 41].

Patients. The population of patients with ischemic or 
hemorrhagic stroke in the conducted RCTs was quite 
heterogeneous with respect to age, disease duration, 
lesion localization, and degree of motor deficit. The vast 
majority of RCTs were conducted in Asian countries, and 
the authors of a recent systematic review suggest it to 

be inappropriate to transfer the results of these studies 
to older European and North American populations of 
post-stroke patients [11].

Efficacy and safety of brain–computer interface 
technologies application after stroke

All published meta-analyses have found an advantage 
of BCI technologies over control groups with respect 
to upper limb motor function recovery after stroke 
as measured by Fugl-Meyer scale (see Appendix). 
As a rule, a medium effect size was observed, with 
standardized mean difference (SMD) or Hedges’ g 
scores greater than 0.5. The benefit of training with BCI 
has also been shown in terms of increased activity of 
daily living according to the modified Barthel index with a 
large effect size (SMD>1.0) [18, 20, 21].

Two studies conducted a meta-analysis in a 
subgroup of studies that included an additional follow-
up period [14, 17]. An earlier study [14] found no effect 
in 6 weeks — 12 months after the end of the training 
course. In a more recent meta-analysis [17], which 
included a larger number of RCTs, the benefit of BCI 
over control groups persisted 2–36 weeks after the end 
of the study, but with a small effect size (SMD=0.33).

Besides, in studies evaluating recovery indices by 
functional magnetic resonance imaging (fMRI) or EEG, 
training with BCI has been shown to promote functional 
brain recovery with a large effect size (SMD=1.11; 
p<0.001) [15].

In all RCTs, no serious adverse events were reported. 
Some patients experienced headache, increased blood 
pressure, upper arm pain, skin hypersensitivity to 
electrode gel, and many patients experienced fatigue 
during training sessions. According to the meta-analysis 
[20], the incidence of adverse events and patient dropout 
rates were comparable in the BCI and control groups.

Factors influencing the efficacy  
of brain–computer interface technologies

In systematic reviews [14, 21], additional subgroup 
meta-analyses were performed to identify possible 
factors influencing the efficacy of BCI (see Appendix).

Two meta-analyses evaluated the dependence of 
BCI efficacy on the post-stroke time. The effect size in 
the subgroup of patients, which had a stroke less than 
6 months ago (subacute phase), was higher than in 
the subgroup, the patients of which had a stroke 6 or 
more months ago (chronic phase) [16, 20]. However, 
no statistically significant differences in the BCI efficacy 
were found between groups with different post-stroke 
time.

The BCI with FES, compared to BCIs connected 
to robotic devices or with visual feedback only, turned 
out to be the most effective model of this technology, 
as shown in four meta-analyses [14, 17, 19, 20]. All 
of these studies have found a large effect size (SMD 
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or Hedges’ g >1.0) when the use of FES–BCI was 
compared with the control group, which used FES 
without BCI control.

Attempting to make a movement may be a more 
favourable paradigm for controlling BCI than motor 
imagination. Two meta-analyses have shown a 
trend of greater effects of BCI training using the 
movement-attempt paradigm [14, 17]. However, due 
to the statistically insignificant differences in the effect 
between studies with different BCI control paradigms 
and considering the fact that the movement-attempt 
paradigm was used in only two RCTs, additional studies 
are needed to determine the influence of this factor more 
precisely.

Two meta-analyses additionally studied the possible 
influence of selected brain signal processing algorithms 
on the efficacy of the BCI technology. It has been shown 
that the use of spectral power in a single frequency 
band compared to the use of filters in several bands 
[17], as well as the use of sensorimotor rhythm control 
algorithms from leads located over motor cortical areas 
compared to the classification of EEG from numerous 
leads located over the entire surface of the head, are 
accompanied by a larger effect size [19].

Problems of widespread application  
of brain–computer interface technologies  
and ways to solve them

The widespread introduction of BCI technologies 
into clinical practice is currently hindered by a number 
of problems related to the technical features of existing 
BCI models, approaches to signal processing, and the 
current level of understanding the processes underlying 
motor recovery on the background of mental training 
[62–68].

One of the key challenges is the difference in 
individual human ability to control non-invasive BCIs 
using a motor imagery paradigm [69]. To master this skill, 
individuals usually require several BCI training sessions. 
However, even after training, the quality of control often 
remains low or instable, which demotivates patients. 
In addition, it has been shown that higher BCI control 
quality indicators are accompanied by higher motor 
recovery indicators [70]. At the same time, between 10 
and 30% of users never achieve a proper level of BCI 
control. Some researchers call this phenomenon “BCI 
illiteracy”, while others, criticizing this term, refer to it as 
a “BCI inefficiency”, which can be overcome by using 
more efficient signal processing algorithms or sufficiently 
long operator training [62, 71, 72]. Most patients after 
stroke can control the BCI, but the quality and specificity 
of control depends on the degree of brain damage and 
neurological deficit [73, 74].

To solve the problem of the BCI control training, 
approaches of multiphase training of the BCI operator 
are being considered, where more brain signal-sensitive 
fMRI, transcranial electrical stimulation, or NIRS 

technologies are used in the first stages of motor imagery 
training [62, 75–77]. Developers continue to improve 
current signal processing approaches to increase the 
BCI control quality [78–84]. There is some hope for 
the application of deep learning algorithms in the BCI 
systems, including to overcome the phenomenon of 
“BCI illiteracy” and to ensure faster operator training [85–
87]. It has also been shown that multimodal feedback 
(a combination of visual, auditory and somatosensory 
feedback) can improve the BCI control learning process 
[88, 89]. In cases where it is difficult for a patient to 
mentally imagine the movement, it is desirable to use 
the movement-attempt paradigm, which has been well 
established in some RCTs [46–48, 90].

Patient fatigue during BCI sessions is also a practical 
problem. Fatigue is a frequent symptom after stroke [91], 
and during the BCI control process it is necessary to 
concentrate attention for quite a long time, focusing on 
the mental task at hand. This problem can be overcome 
by providing breaks every 15 min of a training session 
[20], as well as by using more motivating and varied 
feedback in the form of a game [92, 93].

Besides, modern medical technologies should 
reduce the burden on health care workers and should 
be adapted for independent use by patients at home 
[94]. Most BCI developments to date do not meet these 
criteria. BCIs are cumbersome, require long sensor 
installation time and training to set up the system. 
Wireless high-impedance EEG systems with dry 
electrodes and an easy-to-operate system to launch the 
BCI on a mobile device can solve this problem [95–98].

With regard to the fundamental aspects of the 
application of rehabilitation BCIs based on motor 
imagery paradigm, the issue remains open as to which 
non-motor, non-specific mechanisms are involved in 
mental training-based motor recovery process. A high 
level of focusing on the task to control the BCI over 
an extended period of training may lead to an overall 
improvement in brain functioning, manifested by 
recovery of both motor and cognitive functions, which 
have not been adequately assessed in the majority 
of the RCTs conducted. Future research needs to 
determine whether motor learning on the background of 
the BCI training is a result of improvement in cognitive 
functions or whether the improvement in cognitive 
functions is secondary [62, 99, 100].

Conclusion
From the standpoint of evidence-based medicine, 

training using BCI is an effective method of upper 
limb motor function recovery after stroke. This is 
particularly true for FES–BCI technologies. In addition, 
training using BCI involves an active motor imagery or 
movement-attempt paradigm, being the only active 
rehabilitation method for patients with severe paresis or 
plegia. Currently, there are a number of challenges to 
scaling BCI technologies in clinical practice. However, 
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considering the shortage of personnel for classical 
kinesiotherapy, innovative BCI technologies remain in 
demand, and further developments on their basis and 
technical improvement are sufficiently justified.
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APPENDIX

Key findings from meta-analyses of the efficacy of non-invasive brain–computer interfaces  
for upper limb motor recovery after stroke

References Number of studies  
and patients

Key characteristics  
of the BCI and control groups Key findings

Bai et al.,  
2020 [14]

15 RCTs  
and NrCTs  

(378 patients)

BCIs with different control 
paradigms (MI, MA, motor 
observation) and feedback 
types (robot, FES, visual); 
control — BCI simulation  
or standard therapy

In RCTs, the advantage of BCI over control groups (SMD=0.42; CI: 0.18–0.66; 
p<0.001)
No statistically significant long-term effect was found for a follow-up period  
from 6 weeks to 12 months (SMD=0.12; CI: 0.28–0.52; p=0.54)
FES–BCIs (SMD=1.04) were more efficient compared to BCIs with a robot  
or visual feedback (p=0.01)
A trend of greater effectiveness of the MA paradigm compared to MI (p=0.07)
TES does not improve the effectiveness of BCI training sessions (2 studies; 
SMD=0.30; CI: 0.96–0.36; p=0.37)

Kruse et al., 
2020 [15]

12 RCTs  
(330 patients)

EEG–BCI with MI paradigm 
and different feedback types 
(robot, FES, visual); various 
control groups

The advantage of BCI over control groups (SMD=0.39; CI: 0.17–0.62)
Training using BCI promotes functional brain recovery (larger effect size;  
SMD indices of recovery according to fMRI or EEG — 1.11; CI: 0.64–1.59)

Yang et al., 
2021 [16]

13 RCTs  
(258 patients)

BCIs with different control 
paradigms and feedback 
types (unspecified); 
various control groups

The advantage of BCI over control groups (SMD=0.56; CI: 0.29–0.83; p<0.001)
Large effect size in the subacute stroke subgroup (SMD=1.10; CI: 0.20–2.01; 
p=0.02)
Medium effect size in the chronic stroke subgroup (SMD=0.51; CI: 0.09–0.92; 
p=0.02)
No statistically significant differences in the BCI efficacy between the subacute  
and chronic stroke groups were found (p=0.24)

Mansour 
et al., 2022 
[17]

12 RCTs  
(298 patients)

BCIs with MI or MA paradigm, 
with different feedback types;
various control groups

The advantage of BCI in short-term efficacy (large effect size, Hedges’ g — 0.73) 
and after 2–36 weeks of the follow-up period (small effect size, Hedges’ g — 0.33)
Larger effect size in studies with the MA paradigm compared to MI paradigm 
(Hedges’ s — 1.21 and 0.55, respectively)
The largest effect size (Hedges’ g — 1.2) was found for the FES–BCI compared  
to BCIs connected to a robot or with visual feedback 
The use of power spectral density indicators in a single frequency band  
is accompanied by a larger effect size compared to the use of a filter bank  
to isolate signals in multiple frequency bands with subsequent transformation 
(Hedges’ g — 1.25 and –0.23, respectively)

Peng et al., 
2022 [18]

16 RCTs  
(488 patients)

BCIs with different control 
paradigms (unspecified)  
and feedback types 
(unspecified); 
various control groups

The advantage of BCI over control groups (SMD=0.53; CI: 0.26–0.80; p<0.05)
The advantage of BCI with respect to increased activity of daily living according  
to the Barthel index (7 RCTs; SMD=1.67; CI: 0.61–2.74; p<0.05)
No advantage of BCI with respect to spasticity according to the Ashworth scale 
was found (6 RCTs; SMD=–0.10; CI: 0.50–0.30; p=0.61)

Nojima  
et al.,  
2022 [19]

16 RCTs  
and NrCTs  

(382 patients)

BCIs with different control 
paradigms and feedback 
types; 
various control groups

The advantage of BCI over control groups (SMD=0.48; CI: 0.16–0.80; p=0.006)
A trend of the largest effect size was found for the FES–BCI (SMD=1.01;  
CI: 0.03–2.04)
The use of simple control algorithms by amplitude or degree of sensorimotor 
rhythm suppression from leads located over motor cortex is accompanied  
by a larger effect size (SMD=0.74) compared to the use of more complex 
classification algorithms from numerous leads located over the entire surface  
of the head (SMD=–0.12)

Xie et al., 
2022 [20]

17 RCTs  
(410 patients)

BCIs with different control 
paradigms (unspecified)  
and feedback types; 
various control groups

The advantage of BCI over control groups (SMD=0.62; CI: 0.34–0.80; p<0.0001)
Large effect size in the subacute stroke subgroup (SMD=1.11; CI: 0.22–1.99; 
p=0.01)
Medium effect size in the chronic stroke subgroup (SMD=0.68; CI: 0.32–1.03; 
p=0.0002)
The largest effect size was found for the FES–BCI (SMD=1.11; CI: 0.67–1.54; 
p<0.00001) compared to BCIs connected to a robot or with visual feedback
The advantage of BCI with respect to increased activity of daily living according  
to the Barthel index (3 RCTs; SMD=1.12; CI: 0.65–1.60; p<0.00001)
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reviews

References Number of studies  
and patients

Key characteristics  
of the BCI and control groups Key findings

Shou et al., 
2023 [21]

11 RCTs  
(334 patients)

BCIs with different control 
paradigms (unspecified)  
and feedback types 
(unspecified); in the control 
group — BCI simulation

The advantage of BCI over control groups according to FM–ULC (MD=4.78;  
CI: 1.90–7.65; p=0.001)
The advantage of BCI according to the modified Barthel index (SMD=7.37;  
CI: 1.89–12.84; p=0.008)
No advantage of BCI over control groups according to MAL, ARAT scale,  
and the Wolf Motor Function Test was found

H e r e: RCT — randomized controlled trial; NrCT — non-randomized controlled trial; BCI — brain–computer interface; MI — 
motor imagery; MA — movement attempt; FES — functional electrical stimulation; SMD — standardized mean difference; 
95% CI — confidence interval; TES — transcranial electrical brain stimulation; fMRI — functional magnetic resonance 
imaging;  EEG — electroencephalogram; FM–ULC — Fugl-Meyer Upper Limb Scale; MD — mean difference; MAL — Motor 
Activity Log; ARAT — Action Research Arm Test. 
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