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The aim of the study is a comparative analysis of algorithms for segmentation of three-dimensional OCT images of human skin 
using neural networks based on U-Net architecture when training the model on two-dimensional and three-dimensional data.

Materials and Methods. Two U-Net-based network architectures for segmentation of 3D OCT skin images are proposed in this 
work, in which 2D and 3D blocks of 3D images serve as input data. Training was performed on thick skin OCT images acquired 
from 7 healthy volunteers. For training, the OCT images were semi-automatically segmented by experts in OCT and dermatology. The 
Sørensen–Dice coefficient, which was calculated from the segmentation results of images that did not participate in the training of 
the networks, was used to assess the quality of segmentation. Additional testing of the networks’ capabilities in determining skin layer 
thicknesses was performed on an independent dataset from 8 healthy volunteers.

Results. In evaluating the segmentation quality, the values of the Sørensen–Dice coefficient for the upper stratum corneum, ordered 
stratum corneum, epidermal cellular layer, and dermis were 0.90, 0.94, 0.89, and 0.99, respectively, for training on two-dimensional 
data and 0.89, 0.94, 0.87, and 0.98 for training on three-dimensional data. The values obtained for the dermis are in good agreement 
with the results of other works using networks based on the U-Net architecture. The thicknesses of the ordered stratum corneum and 
epidermal cellular layer were 153±24 and 137±17 μm, respectively, when the network was trained on two-dimensional data and 163±19 
and 137±20 μm when trained on three-dimensional data.

Conclusion. Neural networks based on U-Net architecture allow segmentation of skin layers on OCT images with high accuracy, 
which makes these networks promising for obtaining valuable diagnostic information in dermatology and cosmetology, e.g., for estimating 
the thickness of skin layers.
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Introduction

Optical coherence tomography (OCT) is a modern 
technique for optical noninvasive visualization of 
biological tissues based on the principles of low-

coherence interferometry providing spatial resolution up 
to microns [1, 2]. OCT has been widely used clinically 
in ophthalmology, but has potential in noninvasive 
visualization of the internal structure of skin and mucous 
membranes. The advantage of OCT employment in 
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ophthalmology originates from weak light scattering in 
the eye tissues, while stronger scattering in skin and 
mucous membranes limits practical probing depth to 
values of the order of 1–2 mm [3]. Nevertheless, such 
probing depth allows to analyze the main characteristics 
of skin structural layers: stratum corneum, epidermis, 
dermis.

Approaches to segmentation of ophthalmologic 
OCT images have been proposed earlier (see, for 
example, [4]), including for three-dimensional diagnostic 
images [5]. Weak scattering of probing radiation in 
structural layers of eye tissues provides rather high 
contrast of layer boundaries in OCT images, which 
makes the problem of layer segmentation relatively 
simple. In highly scattering media, including skin, 
several typical features can be identified, such as 
pronounced attenuation of OCT signal with probing 
depth and relatively low contrast of structural layers, 
comparable in some cases with the contrast of speckle 
structure of OCT image [6]. Manual segmentation of 
two-dimensional OCT images is resource-consuming, 
and systemic segmentation of three-dimensional OCT 
images without tools that automate this process looks 
very difficult. Thus, effective application of OCT in 
dermatology requires development of tools capable to 
quickly and qualitatively extract necessary diagnostic 
information from the obtained three-dimensional skin 
images. This will contribute to a wider use of OCT in 
clinical dermatology.

Attempts to automate the segmentation of OCT 
images of skin have been made for a long time. For 
example, in 2006 a group of scientists performed 
segmentation of three-dimensional skin images [7] 
to determine the upper boundary of the skin, as well 
as the separation of the epidermis from the dermis; 
then hair follicles were highlighted on the images. The 
proposed algorithm allowed estimation of the average 
epidermal thickness. The algorithm used a sequence 
of median filters applied to the surfaces of intensity 
peaks, followed by approximation of the layer boundary 
by a polynomial function. Thus, this algorithm engages 
manually selected empirical parameters. In the paper 
[8], a segmentation method based on support vector 
machine (SVM) classification of statistical speckle 
distribution was proposed. Another approach that 
has been applied by several research groups is the 
use of graphs. For example, paper [9] proposed a 
method for detecting the upper boundary of skin and 
lower boundary of epidermis, which includes several 
steps: preprocessing based on weighted least squares 
method, detecting the upper boundary of skin using 
graph, and detecting the boundary between epidermis 
and dermis based on local integral projection. Graph 
theory has also been applied to automatically detect 
the skin surface and the boundary between epidermis 
and dermis in OCT images of skin in studies [10, 11]. 
Note that the above-mentioned works were based on 
classical image processing methods.

In 2015, a group of scientists from the University of 
Freiburg developed a U-Net architecture specifically for 
medical image segmentation [12]. It was created taking 
into account the fact that the sample size of training 
images for medical problems can be significantly limited, 
and the boundaries of the selected areas are not always 
obvious due to possible noise in images obtained with 
custom medical equipment.

The U-Net architecture and other convolutional 
neural network architectures then found widespread 
use in ophthalmology and dermatology. The articles [4, 
13] discuss the application of U-Net for segmentation 
of retinal OCT images. However, in transparent media 
the contrast of boundaries is much higher compared 
to highly scattering media, so these methods require 
further development when adapting them to the problem 
of segmentation of OCT images of skin.

In 2018, convolutional U-Net was used to determine 
the boundary between epidermis and dermis [14]. 
In 2019, a modified U-Net (densely connected 
convolutions added) was used to analyze OCT images 
of laboratory animal tissues, namely for segmentation 
of skin, subcutaneous fat layer, fascial-muscular layer 
and tattoos used as reference marks [15]. Other 
convolutional network architectures such as ResNet18 
[16] or CE-Net [17], which combine ResNet and U-Net, 
are also used for segmentation of OCT images of 
laboratory animal tissues.

A number of studies on the application of U-Net 
architecture in the development of algorithms for 
segmentation of diagnostic skin OCT images should 
be emphasized. The paper [18] presents an approach 
to segmentation of the epidermal layer together 
with follicular structures in OCT images of healthy 
volunteers’ skin using a convolutional neural network 
based on the U-Net architecture with post-processing 
consisting in image filtering. The paper [19] presents 
an approach to segmentation of skin images obtained 
with high-frequency ultrasound (the features of OCT 
and ultrasound images are similar) with preprocessing 
and subsequent application of U-Net. In the work [20], 
the stratum corneum, epidermis, and dermis were 
distinguished in OCT images of human skin with the help 
of U-Net architecture, which training was carried out only 
on images of healthy skin areas, and the algorithm was 
also used for processing images of skin with damage, 
such as scar tissue from laser treatment or tumor. As 
part of an experiment on laboratory mice [21], the U-Net 
architecture was also used to segment OCT images 
of laser-damaged skin areas. In [22], a U-Net-based 
segmentation model pre-trained on rodent skin OCT 
images was proposed for additional training on human 
skin data. The authors claim that with such an approach 
a single 2D segmented image from a 3D volume is 
sufficient to accurately segment the entire 3D image for 
a single patient.

Thus, recent works on OCT image segmentation 
emphasize the use of U-Net architecture or similar 
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convolutional networks, which allows us to justify 
the preference of such architecture when selecting 
a model for segmentation. It should be noted that 
in almost all of the cited papers, model training 
was performed on the basis of preprocessed 
two-dimensional data (B-scans), including cases 
when the algorithms were subsequently applied 
for segmentation of three-dimensional data. Such 
analysis was predominantly performed for each 
individual B-scan from the entire dataset. However, 
there are studies that show that the use of volumetric 
information can improve segmentation prediction 
results [23].

The purpose of this work is a comparative analysis 
of algorithms for segmentation of three-dimensional 
OCT images of human skin using the U-Net 
architecture when training a model on two-dimensional 
and three-dimensional data. The study was conducted 
on a sample of three-dimensional images of thick skin 
(localized of fingers). Both approaches are compared 
in terms of the quality of image segmentation in 
the problem of delineating the boundaries of four 
structural layers: the upper layers of stratum corneum, 
the ordered stratum corneum, the cellular layer of 
epidermis, and the dermis.

Materials and Methods

System for optical coherence tomography. 
To obtain images of human skin in the study we 
used OCT-1300E device (IAP RAS, Biomedtech 
LLC, Russia) with a central wavelength of 1300 nm 
equipped with a contact fiber-optic probe. The setup 
allows obtaining three-dimensional OCT images with 
axial (depth) spatial resolution of 15 μm. The output 
data I(x, y, z) is an array of 256×512×512 elements 
(Figure 1), where each element corresponds to an OCT 
signal from the corresponding voxel in relative units. 
The physical dimensions of the visualized volume are 
1.2×3.0×3.0 mm. A typical image of thick human skin 
obtained with OCT-1300E is presented in Figure 1.

Dataset. In this study, a set of labeled OCT images 
of thick skin obtained from 7 healthy volunteers (21–
45 years old; 3 males, 4 females) was used to train 
convolutional networks. All images were taken from the 
pad of the distal phalanx of the index finger. A set of 
16 thick skin images acquired from 8 healthy volunteers 
(21–45 years old; 3 males, 5 females) was additionally 
used to test the ability of the networks in determining 
the thicknesses of the structural layers of skin. The 
study was approved by the local ethical committee 

of Privolzhsky Research Medical 
University (protocol No.17 of October 
11, 2019). Due to the peculiarities of 
the fiber optic probe of the OCT device, 
the image texture in the border regions 
(left and right borders of a B-scan) may 
be distorted compared to the central 
part of the image, so a central part of 
256×512×256 voxels in each array was 
left for study from each 3D dataset.

Primary segmentation of OCT 
images. The layers of thick skin can 
be most clearly identified in a two-
dimensional OCT image (B-scan). 
A typical OCT B-scan of human thick 
skin is shown in Figure 2. The left side 
is the original OCT image, while the 
right side shows a labeled image in 

Figure 1. Three-dimensional OCT image of human thick skin obtained 
with OCT-1300E device

Upper layers of stratum corneum
Ordered stratum corneum
Cellular layers of epidermis

Dermis

Figure 2. Typical segmented two-dimensional OCT image of thick skin
The image size is 3.0×1.2 mm
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which four structural layers are highlighted. The feature 
of thick human skin is thick stratum corneum, which 
can be divided into two layers [24]: a thin upper layer 
of disordered scales (in OCT images it is manifested 
by a thin layer with high signal intensity, similar to 
the stratum corneum of thin skin) and a thick layer of 
ordered scales (in OCT image it is manifested by a 
layer with reduced signal level). Below the stratum 
corneum cellular layer of epidermis is situated, which 
is characterized by a higher signal intensity compared 
to the ordered scales of the stratum corneum, below 
the epidermis the dermis is located, characterized by 
a lower OCT signal level compared to the cellular layer 
of epidermis. The lower border of the dermis cannot be 
detected in an OCT image, since the imaging depth of 
the employed OCT system is less than the full thickness 
of the thick skin.

The initial data labeling for training networks based 
on the U-Net architecture was performed using a semi-
automatic approach and then verified by OCT specialists 
and dermatologists. Semi-automatic segmentation 
was performed by a method similar in principle to that 
proposed in [12], which is based on determining the 
average signal level (mean) and its standard deviation 
(std) in each of the layers i={2, ..., 5} (i=1 corresponds 
to the space inside the probe above the skin surface in 
the OCT image). To implement this approach, in each 
layer, a cuboid region Mi was pre-selected, which was 
guaranteed to belong to the given layer, i.e., visually 
did not include boundary voxels. Then, for each of the 
layers, the OCT signal level, presumably corresponding 
to the upper boundary of the layer, was determined 
based on the statistics of signal distribution in the 
selected area Mi:

It
i =meanMi(I)+αistdMi(I),

where αi is an empirically selected parameter. Based 
on the value of It

i, the surface of the upper boundary of 
a certain layer i was detected, and a median filter with 
a window size of wi=11 voxels was then applied to its 
longitudinal coordinate (z). The obtained surface was 
visually estimated by experts for compliance with the 
real boundary. In case of unsatisfactory results, 
the parameters αi and wi were re-selected, and then 
the procedure was repeated. After finding the surface 
corresponding to the upper boundary of layer i=2 (the 
upper layer of stratum corneum), a median filter was 
applied to the signal level of the image area under 
this boundary to reduce speckle noise. Next, the 
same procedure for determining layer boundaries was 
performed for the underlying layers (i>2).

This method has a significant disadvantage because 
it requires empirical selection of parameters at each step 
and visual control of the labeling quality by a specialist. 
However, it should be noted that it is significantly faster 
than fully manual data labeling when labeling three-
dimensional datasets.

Application of U-Net architecture for OCT skin 
image segmentation. The main task of the neural 
network in the considered problem is to attribute a class 
label to each voxel of the OCT image. The choice is 
restricted to five classes: background (space above 
the skin surface), upper layers of the stratum corneum, 
ordered stratum corneum, cellular layer and dermis. 
Accordingly, the input data for the neural network is a 
three-dimensional array of OCT signal values I(x, y, z) 
and the corresponding three-dimensional array of labels 
of class K(x, y, z), where each voxel is mapped to an 
integer value varying from 1 to 5. This study compares 
the application of two convolutional neural networks 
based on the U-Net architecture using 2D or 3D data for 
training. 

The basic idea of the network architecture is to 
supplement the usual contracting path (the left part of 
the letter “U”) with an expansive path, decoder (the right 
part of the letter “U”). These layers increase the output 
resolution. To preserve localization information, the 
layers of the contracting path and expansive path 
of the network are connected by skip connections. 
When solving the small data problem, the original 
paper [11] uses data augmentation, applying elastic 
deformations to the existing labeled images. This allows 
the network to learn invariance to such deformations 
without having to see the transformation data in the 
labeled image dataset.

To provide a sufficient training sample size, the 
obtained three-dimensional data sets are divided into 
blocks, the set of which is used to train the neural 
network. This study compares two types of block 
splitting. In one case, B-scans of 256×512×1 voxels 
(two-dimensional data) represent the block, while in 
the other case, three-dimensional blocks of 256×64×64 
voxels are used. The selection of blocks for the two 
considered cases is shown in Figure 3.

The architecture of the network for training on 
two-dimensional data (2D U-Net) repeats the standard 
U-Net architecture, which is described in the original 
article [11], with minor changes (Figure 4). The network 
consists of two parts: an encoder (contracting path, 
left side) and a decoder (expansive path, right side). 
The encoder branch has 5 stages and is responsible 
for extracting multi-scale features of the input image. 
The decoder branch also includes 5 stages and is 
required to upsample the feature map obtained after the 
encoder, and due to the skip connections in this branch 
it is possible to recover the exact localization of the 
features obtained in the encoder. Each encoder stage 
consists of a 3×3 convolution with a 1 voxel padding of 
the original image, followed by patch normalization and 
a nonlinear ReLu activation function. Further another 
similar convolution and ReLu activation are performed. 
A 2×2 maxpool operator is then applied to the resulting 
feature maps, which reduces the spatial dimensions, 
thereby compressing the information and allowing the 
number of feature maps to increase. The 1st, 2nd, 3rd, 
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4th, and 5th stages of encoding generate 32, 64, 128, 
256, 512 features, respectively. In the decoder branch, 
each stage includes a connection to the corresponding 
layer from the symmetric encoder, followed by a 3×3 
convolution, batch normalization, a nonlinear ReLU 
activation function, another 3×3 convolution, and a 
final ReLU activation. For the new decoder stage, a 
transposed convolutional layer is applied to the feature 
maps in order to increase the discretization of the 
feature maps. The last block of the decoder consists of a 
convolution layer with a 1×1 kernel. Thus, to each voxel 
five confidence levels of belonging to each of the classes 

are assigned, after which the voxel is assigned to the 
class corresponding to the highest confidence level.

When using the 2D U-Net model to segment 
a 3D image, it was divided into blocks of 
256×512×1 voxels. For each such block, segmentation 
was performed, after which the obtained data were 
combined into a 3D array.

The architecture of the network for training 
on three-dimensional data (3D U-Net) follows the 
architecture described above with the difference that the 
input is represented by a block of size 256×64×64 voxels 
(Figure 5), and 2D operations are replaced by their 

Figure 4. Network architecture for OCT image segmentation with training on two-dimensional data (2D U-Net)

Skip connections
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Figure 3. Splitting of 3D OCT image into blocks for training:
(a) two-dimensional blocks and (b) three-dimensional blocks
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3D analogues (e.g., 2D convolutions are replaced by 3D 
convolutions). To segment the full 3D OCT image with 
the 3D U-Net model, the image was split into blocks 
with intersections of size 256×64×64 voxels, for each 
of which five 3D confidence degree maps of belonging 
to each class were computed independently. For the 
voxels belonging to the block intersection region, 
the degree of confidence of belonging to each class 
was defined as the sum of the values for each of the 
blocks weighted by a Gaussian function with a radius of 
16 voxels as a function of the distance to the center 
of the block. This procedure was followed by assigning 
a class value to each voxel according to the maximum 
confidence value, similar to the 2D U-Net application. 
This allowed us to get rid of the peculiarities occurring at 
block boundaries.

Training of networks with U-Net architecture. The 
available dataset consisted of 7 3D images of size of 
256×512×256 voxels from 7 different volunteers. In 
order to avoid overtraining and incorrect values during 
quality assessment on dependent data, two 3D arrays 
out of the seven were kept for the test sample and were 
not used in the training process. Next, a cross-validation 
method, namely leave-one-out cross-validation, was 
applied, where one 3D image from a particular volunteer 
is considered as an object. From the five models built, 
the one that demonstrated the best results during 
validation was selected. This model was applied to the 
test sample.

The 2D U-Net network received two-dimensional 
images of size 256×512×1 as input. Such images were 
obtained from 3D images as slices along the axis with a 
dimensionality of 512 voxels, which provided 256 blocks 
for training for each OCT image. The 3D U-Net network 
received three-dimensional images of size 256×64×64 
as input. To obtain them, the 3D image was divided 
without intersections into such blocks, which provided 
32 blocks for training for each 3D OCT image.

The loss function, cross-entropy, and the ADAM 
(Adaptive Moment Estimation) optimizer were used for 
training. These are the most well-proven loss function 
and optimizer in such tasks. The learning rate coefficient 
was set to 0.001. The coefficients used to compute the 
moving averages of the gradient and its square were set 
as betas=(0.9, 0.98).

Testing process. The Sørensen–Dice coefficient 
(DSC) was used in the quality assessment. Let Ktrue (x, y, z) 
be the true array of class labels and Ksegm (x, y, z) be the 
array of class labels obtained by applying the neural 
network. Then the Sørensen–Dice coefficient is the 
ratio of the doubled number of voxels of a certain class 
matched in the arrays Ktrue (x, y, z) and Ksegm (x, y, z) to 
the sum of the number of voxels of these classes in each 
of the arrays: 

true segm

i true segm

n K x ,y, z K x, y, z
DSC

n K x ,y, z K x, y, z

= =i

=i n( =i

( ) ( ) )

( ) ) = (
2 ,

)

(

( )
=

(x, y, z)

(x, y, z) +

where i is the class index value; the function n(...) returns 

Figure 5. Network architecture for OCT image segmentation with training on three-dimensional data (3D U-Net)

Skip connections
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Figure 6 (a) shows the original OCT image, Figure 6 (b) 
represents the segmentation obtained in semi-
automated mode under expert supervision, Figure 6 (c) 
shows the segmentation results using 2D U-Net, and 
Figure 6 (d) shows the result of processing with 3D 
U-Net. 

Figure 7 shows a visualization of the results of 
applying 2D U-Net and 3D U-Net to the entire 3D array.

To numerically characterize the quality of 
segmentation of 3D OCT images by 2D U-Net and 
3D U-Net networks, segmentation was performed 
for two marked OCT images that were not included in 

V.A. Shishkova, N.V. Gromov, A.M. Mironycheva, M.Yu. Kirillin

the number of voxels for which the condition in brackets 
is satisfied. The DSC coefficient takes values from 0 
to 1, where a value of 1 corresponds to the case of a 
perfect match between the labeled and predicted masks. 
This is a metric that is widely used to evaluate the quality 
of segmentation algorithms. The metric was computed 
for 3D masks for both models.

Results

An example of segmentation of structural layers in 
a two-dimensional OCT image is shown in Figure 6. 

а b

c d

Figure 6. Segmentation of an OCT image of thick skin:
(a) original; (b) semi-automatic segmentation; (c) segmentation by 2D U-Net model; (d) segmentation by 3D U-Net model

а b
Figure 7. Result of 3D OCT image 
segmentation using 2D U-Net (a) 
and 3D U-Net (b)
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Figure 8. Comparison of DSC coefficients for 2D U-Net 
and 3D U-Net models for layer segmentation on 3D OCT 
images from the test sample

T a b l e  1
Averaged values of DSC coefficients  
for 2D U-Net and 3D U-Net models

Layer 2D U-Net 3D U-Net

Upper layer of stratum corneum 0.90 0.89

Ordered stratum corneum 0.94 0.94

Cellular layer of epidermis 0.89 0.87

Dermis 0.99 0.98

Figure 9. Comparison of the results of determining 
the thicknesses of the ordered stratum corneum 
(a) and the cellular layer of epidermis (b) for 2D 
U-Net and 3D U-Net models for layer segmentation 
in 3D OCT images from the test sample
The gray band shows the possible error of boundary 
position estimation related to the axial spatial 
resolution of the OCT system
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T a b l e  2
Thicknesses of morphologic layers  
of thick skin obtained from segmentation data  
in comparison with the results of [24]

Layer Thickness (µm), 
2D U-Net

Thickness (µm), 
3D U-Net

Thickness (µm), 
[24]

Ordered stratum  
corneum

 
153±24

 
163±19

 
175 [147; 210]

Cellular layer  
of epidermis

 
137±17

 
137±20

 
119 [112; 126]

N o t e. Data are presented as M±SD and Me [Q1; Q3].

the training sample. Figure 8 shows a diagram of the 
correspondence of DSC coefficient values for different 
image layers from the test sample.

Table 1 shows the averaged values of the Sørensen–
Dice coefficients for each layer in the 3D images of the 
test sample.

Further testing of the developed segmentation 
algorithms was performed on an additional set of 16 
images of thick human skin (obtained from 8 volunteers) 
that did not overlap with the training and test samples. 
Segmentation was performed for all images in this 
sample, from which layer thicknesses were determined 
assuming that the average refractive index of the skin is 
1.4. The results of comparing the thickness estimates of 
the ordered stratum corneum and epidermis are shown 
in Figure 9.

The averaged values of ordered stratum corneum 
and epidermis thicknesses obtained from the results 
of OCT image segmentation are presented in Table 2 
in comparison with the values obtained earlier in [24].

Discussion

The results of applying the segmentation algorithm for 
a single B-scan (see Figure 6) show that both networks 
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provide segmentation consistent with the original 
labeling and can be used to estimate the average 
layer thickness. However, visually, the application of 
3D U-Net (see Figure 6 (d)) appears more accurate in 
this example: this network more accurately conveys 
the features of the boundary between the stratum 
corneum and the epidermis, representing the presence 
of papillary patterns, whereas the segmentation 
results using 2D U-Net (see Figure 6 (c)) show a less 
accurate topography of the boundary associated with 
papillary patterns. It should be noted that the results 
obtained for the upper stratum corneum layer cannot be 
interpreted unambiguously. The tissue boundary has the 
highest signal level due to scattering from the surface, 
determined by the high refractive index mismatch as 
well as the random orientation of the surface scales 
of the stratum corneum. Moreover, the contact of the 
OCT probe surface with the skin surface is not always 
tight, which leads to the formation of air lacunae, the 
boundaries of which also are manifested by a high 
signal level. Since the longitudinal resolution of the 
OCT system is 15 μm, this value represents the error in 
determining the position of the boundary. However, its 
value is comparable to the thickness of the upper layers 
of the stratum corneum, which in the image are adjacent 
to the surface of the contact probe.

Evaluation of the segmentation accuracy using the 
Sørensen–Dice coefficient (see Figure 8) demonstrated 
that all obtained DSC values exceed 0.8, with values 
for 2D U-Net for the same layers not lower than those 
obtained using 3D U-Net. The averaged DSC values (see 
Table 1) demonstrate a value of at least 0.87, with the 
2D U-Net accuracy for all layers proving to be at least as 
good as that of the 3D U-Net. Thus, the initial assumption 
that the 3D information contained in the 3D training 
blocks can improve segmentation accuracy has not been 
confirmed. Presumably, the situation will be different 
in the presence of volumetric macro heterogeneities of 
the skin (tumors, hair follicles, etc.), and the use of a 3D 
model will improve the prediction result.

When comparing the quality of the developed 
algorithm with the quality of the labeling algorithms 
described in other studies with OCT images, there is 
a problem of correct comparison of the results, since 
each study segment different structural layers in images 
of skin of different localizations. Since morphologically 
the most similar layer of thick and thin skin is the 
dermis, we compared the DSC value obtained for 
the dermis with the similar value of other studies that 
investigated thin skin. In [20], the DSC for the dermis 
was 0.96, which is almost identical to the results of [18], 
where the DSC for the dermis was 0.96±0.01. It should 
be noted that both of these works used neural networks 
based on U-Net architecture. Application of the 
algorithm developed in the present work provides DSC 
values for the dermis of 0.99 and 0.98 for 2D U-Net and 
3D U-Net models, respectively, which is comparable to 
the results of other works.

The analysis of thickness estimates of skin structural 
layers demonstrated (see Figure 9) that 3D U-Net gives 
higher estimates of the thickness of the ordered stratum 
corneum (see Figure 9 (a)) compared to 2D U-Net. The 
discrepancy between the results of the two models for 
this layer does not exceed the error due to the spatial 
resolution of the OCT device. Similar results for the 
epidermis cellular layer are presented in Figure 9 (b), 
which shows that the 3D U-Net network gives higher 
estimates of layer thickness for cases of greater 
epidermis thickness, whereas the opposite trend is 
observed for smaller thickness values. It should be noted 
that for almost all cases, the mismatch between the two 
models also does not exceed the instrumental error 
induced by the axial spatial resolution of the system.

The analysis of the sample-averaged structural 
layer thicknesses (see Table 2) showed that the 2D 
U-Net model gives lower values for the average 
values compared to the 3D U-Net model as well, but 
their difference does not exceed either the standard 
deviation in the group or the error provided by the spatial 
resolution of the OCT system. The obtained values 
also agree well with the values demonstrated earlier 
in [24]: the ranges of values for the thicknesses of the 
ordered stratum corneum calculated on the basis of 
the segmentation data fit completely within the ranges 
published in that work on the basis of the analysis 
of a large sample, while for the cellular layer of the 
epidermis the intervals overlap significantly. This shows 
the promise of the proposed approach in extracting 
morphologic information from skin OCT imaging arrays.

In addition to diagnostic problems, the data obtained by 
automatic segmentation of OCT images can be used to 
build models of light propagation in biological tissues and 
signal formation in optical diagnostics systems [25], as 
well as for dosimetry tasks in photodynamic therapy [26].

Conclusion

This paper demonstrates the capabilities of 
convolutional neural networks based on U-Net 
architecture in the task of segmentation of 3D OCT 
images of human thick skin. The main goal of the study 
was to compare different approaches to the selection 
of image blocks for training the neural network, which 
ultimately determines its structure. To the best of our 
knowledge, no such studies have been conducted 
previously.

It was shown that the models show similar results in 
segmentation performance: DSC for the 2D U-Net model 
amounts to 0.90, 0.94, 0.89, 0.99 for the upper stratum 
corneum, ordered stratum corneum, cellular layer of 
epidermis, and dermis, respectively. These values for 
the 3D U-Net model amount to 0.90, 0.95, 0.88, 0.98. 
Hence, it is advisable to use the model for which it is 
easier to collect data for training. For example, for thin 
skin segmentation, it may be easier to collect a set of 
labeled 2D images. In the considered case, a semi-
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automatic initial labeling method was applied using a 
priori information about a particular 3D array, which 
allowed training the 3D model. 

In most of the known works dealing with the 
segmentation of OCT images of skin, thin skin served 
as the object of study, whereas in the present work thick 
skin, which is morphologically different from thin skin, 
was investigated. The obtained estimates of thickness 
of the ordered stratum corneum and epidermal cellular 
layer are 153±24 and 137±17 μm, respectively, when 
using 2D U-Net data and 163±19 and 137±20 μm, 
respectively, for 3D U-Net data.

The software with the embedded proposed models 
can be an important addition to the OCT system and can 
be applied directly in clinical practice. 

Acknowledgements. The authors are grateful to the 
staff of the Youth Laboratory of Artificial Intelligence and 
Big Data Processing of National Research Lobachevsky 
State University of Nizhny Novgorod for useful 
discussions.

Research funding. The study was supported by the 
Russian Science Foundation (project No.24-15-00175), 
https://rscf.ru/project/24-15-00175/.

Conflicts of interests. The authors have no conflicts 
of interest to declare. 

References

1.	 Rukovodstvo po opticheskoy kogerentnoy tomografii 
[Handbook of optical coherence tomography]. Pod red. 
Gladkovoy N.D., Shakhovoy N.M., Sergeeva A.M. 
[Gladkova N.D., Shakhova N.M., Sergeev A.M. (editors)]. 
Moscow: Fizmatlit; 2007.

2.	 Mul’timodal’naya opticheskaya kogerentnaya 
tomografiya v klinicheskoy meditsine [Multimodal optical 
coherence tomography in clinical medicine]. Pod red. 
Gladkovoy N.D., Gelikonova G.V., Kiselevoy E.B. 
[Gladkova N.D., Gelikonov G.V., Kiseleva E.B. (editors)]. 
Moscow: Fizmatlit; 2022.

3.	 Wan B., Ganier C., Du-Harpur X., Harun N., 
Watt F.M., Patalay R., Lynch M.D. Applications and future 
directions for optical coherence tomography in dermatology. 
Br J Dermatol 2021; 184(6): 1014–1022, https://doi.org/ 
10.1111/bjd.19553.

4.	 Venhuizen F.G., van Ginneken B., Liefers B., 
van Grinsven M.J.J.P., Fauser S., Hoyng C., Theelen T., 
Sánchez C.I. Robust total retina thickness segmentation in 
optical coherence tomography images using convolutional 
neural networks. Biomed Opt Express 2017; 8(7): 3292–
3316, https://doi.org/10.1364/BOE.8.003292.

5.	 Zhang X., Yousefi S., An L., Wang R.K. Automated 
segmentation of intramacular layers in Fourier domain 
optical coherence tomography structural images from normal 
subjects. J Biomed Opt 2012; 17(4): 046011, https://doi.
org/10.1117/1.JBO.17.4.046011.

6.	 Schmitt J.M., Xiang S.H., Yung K.M. Speckle in optical 
coherence tomography. J Biomed Opt 1999; 4(1): 95–105, 
https://doi.org/10.1117/1.429925.

7.	 Hori Y., Yasuno Y., Sakai S., Matsumoto M., 

Sugawara T., Madjarova V., Yamanari M., Makita S., Yasui T., 
Araki T., Itoh M., Yatagai T. Automatic characterization and 
segmentation of human skin using three-dimensional optical 
coherence tomography. Opt Express 2006; 14(5): 1862–
1877, https://doi.org/10.1364/oe.14.001862.

8.	 Ali M., Hadj B. Segmentation of OCT skin images 
by classification of speckle statistical parameters. IEEE 
International Conference on Image Processing 2010; p. 613–
616, https://doi.org/10.1109/icip.2010.5653019.

9.	 Li A., Cheng J., Yow A.P., Wall C., Wong D.W., 
Tey H.L., Liu J. Epidermal segmentation in high-definition 
optical coherence tomography. Annu Int Conf IEEE Eng Med 
Biol Soc 2015; 2015: 3045–3048, https://doi.org/10.1109/
EMBC.2015.7319034.

10.	Taghavikhalilbad A., Adabi S., Clayton A., 
Soltanizadeh H., Mehregan D., Avanaki M.R.N. Semi-
automated localization of dermal epidermal junction in optical 
coherence tomography images of skin. Appl Opt 2017; 
56(11): 3116–3121, https://doi.org/10.1364/AO.56.003116.

11.	Srivastava R., Yow A.P., Cheng J., Wong D.W.K., 
Tey H.L. Three-dimensional graph-based skin layer 
segmentation in optical coherence tomography images 
for roughness estimation. Biomed Opt Express 2018; 9(8): 
3590–3606, https://doi.org/10.1364/BOE.9.003590.

12.	Ronneberger O., Fischer P., Brox T. U-Net: 
convolutional networks for biomedical image segmentation. 
Medical image computing and computer-assisted 
intervention — MICCAI 2015. 2015; p. 234–241, https://doi.
org/10.1007/978-3-319-24574-4_28.

13.	Roy A.G., Conjeti S., Karri S.P.K., Sheet D., 
Katouzian A., Wachinger C., Navab N. ReLayNet: retinal 
layer and fluid segmentation of macular optical coherence 
tomography using fully convolutional networks. Biomed Opt 
Express 2017; 8(8): 3627–3642, https://doi.org/10.1364/
BOE.8.003627.

14.	Calderon-Delgado M., Tjiu J.W., Lin M.Y., Huang S.L. 
High resolution human skin image segmentation by means 
of fully convolutional neural networks. 2018 International 
Conference on Numerical Simulation of Optoelectronic 
Devices (NUSOD). 2018; p. 31–32, https://doi.org/10.1109/
nusod.2018.8570241.

15.	Kepp T., Droigk C., Casper M., Evers M., 
Hüttmann G., Salma N., Manstein D., Heinrich M.P., 
Handels H. Segmentation of mouse skin layers in optical 
coherence tomography image data using deep convolutional 
neural networks. Biomed Opt Express 2019; 10(7): 3484–
3496, https://doi.org/10.1364/BOE.10.003484.

16.	Chueh K.M., Kao H.L., Chen H.H., Shun C.T., 
Calderon-Delgado M., Huang S.L. Deep feature learning 
for contour segmentation of aorta’s intima by using sub-
micron-resolution OCT. 2019 IEEE International Conference 
on BioPhotonics (BioPhotonics). 2019; p. 1–2, https://doi.
org/10.1109/biophotonics.2019.8896753.

17.	Gu Z., Cheng J., Fu H., Zhou K., Hao H., Zhao Y., 
Zhang T., Gao S., Liu J. CE-Net: context encoder network 
for 2D medical image segmentation. IEEE Trans Med 
Imaging 2019; 38(10): 2281–2292, https://doi.org/10.1109/
TMI.2019.2903562.

18.	Del Amor R., Morales S., Colomer A., Mogensen M., 
Jensen M., Israelsen N.M., Bang O., Naranjo V. Automatic 
segmentation of epidermis and hair follicles in optical 

Segmentation of 3D OCT images by U-Net-based Networks



16   СТМ ∫ 2025 ∫ vol. 17 ∫ No.1 

AdvAnced ReseARches

coherence tomography images of normal skin by 
convolutional neural networks. Front Med (Lausanne) 2020; 
7: 220, https://doi.org/10.3389/fmed.2020.00220.

19.	Czajkowska J., Badura P., Korzekwa S., Płatkowska-
Szczerek A. Deep learning approach to skin layers 
segmentation in inflammatory dermatoses. Ultrasonics 2021; 
114: 106412, https://doi.org/10.1016/j.ultras.2021.106412.

20.	Liu X., Chuchvara N., Liu Y., Rao B. Real-time deep 
learning assisted skin layer delineation in dermal optical 
coherence tomography. OSA Contin 2021; 4(7): 2008–2023, 
https://doi.org/10.1364/osac.426962.

21.	Gao T., Liu S., Gao E., Wang A., Tang X., Fan Y. 
Automatic segmentation of laser-induced injury OCT images 
based on a deep neural network model. Int J Mol Sci 2022; 
23(19): 11079, https://doi.org/10.3390/ijms231911079.

22.	Ji Y., Yang S., Zhou K., Lu J., Wang R., Rocliffe H.R., 
Pellicoro A., Cash J.L., Li C., Huang Z. Semisupervised 
representative learning for measuring epidermal thickness 
in human subjects in optical coherence tomography by 
leveraging datasets from rodent models. J Biomed Opt 
2022; 27(8): 085002, https://doi.org/10.1117/1.JBO.27. 
8.085002.

23.	Zhang Y., Liao Q., Ding L.,  Zhang J. Bridging 2D 
and 3D segmentation networks for computation efficient 
volumetric medical image segmentation: an empirical study 
of 2.5D solutions. arXiv 2022, https://doi.org/10.48550/
arXiv.2010.06163.

24.	Shlivko I.L., Kirillin M.Y., Donchenko E.V., 
Ellinsky D.O., Garanina O.E., Neznakhina M.S., Agrba P.D., 
Kamensky V.A. Identification of layers in optical coherence 
tomography of skin: comparative analysis of experimental 
and Monte Carlo simulated images. Skin Res Technol 2015; 
21(4): 419–425, https://doi.org/10.1111/srt.12209.

25.	Kirillin M., Meglinski I., Kuzmin V., Sergeeva E., 
Myllylä R. Simulation of optical coherence tomography 
images by Monte Carlo modeling based on polarization 
vector approach. Opt Express 2010; 18(21): 21714–21724, 
https://doi.org/10.1364/OE.18.021714.

26.	Kurakina D., Sergeeva E., Khilov A., Kirillin M. Light 
dose and fluorescence imaging depth in dual-wavelength 
PDT: a numerical study for various photosensitizer 
distributions in a layered biotissue. Journal of Biomedical 
Photonics & Engineering 2024; 10(4): 040318, https://doi.org/ 
10.18287/jbpe24.10.040318.

V.A. Shishkova, N.V. Gromov, A.M. Mironycheva, M.Yu. Kirillin


