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The aim of the study is to analyze the manifestation of selected cellular senescence markers on the models of replicative senescence,
stress-induced senescence, and chronological aging of human mesenchymal stem cells and to study the feasibility of predictive models for
assessing the age and duration in vitro cultivation based on the transcriptomic data and investigation of cell morphology.

Materials and Methods. In the study, the dynamics of expression of individual genes encoding key regulators of cellular aging
across various models of cellular senescence, as well as telomere length were investigated by real-time PCR. The analysis of the high-
throughput transcriptome sequencing datasets of mesenchymal stem cells from the donors of different ages has been performed. Using
regression methods, predictive models based on transcriptomic data were developed to estimate chronological age and the duration of
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in vitro cultivation. Using microscopy methods and subsequent image analysis by machine-learning algorithms, morphological alterations
associated with cellular senescence have been explored and segmentation neural network model has been created for extracting nuclear
morphology parameters and classification of the cells based on the duration of cultivation in vitro.

Results. COKN1A, LMNB1, HMGB2 genes demonstrated reproducible similar dynamics on the models of replicative or stress-induced
senescence and chronological aging of mesenchymal stem cells. The expression profile of the senescence-associated inflammatory
phenotype components was variable in different models of cell aging. The analysis of mesenchymal stem cell transcriptomes from the
donors of various ages revealed considerable donor-dependent heterogeneity of the cells, which complicates the development of precise
transcriptome data-based predictive models. Investigation of the changes in the telomere length has demonstrated its applicability for
assessing the dynamics of replicative senescence in vitro. The developed segmentation neural network model allowed for detecting
senescence-associated dynamics of nuclear morphology alterations in the process of replicative aging.
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Introduction

Preparations of allogenic and autologous mesen-
chymal stem cells (MSCs) are considered as a
promising component of regenerative cell therapy [1]. In
clinical trials, high doses reaching hundreds of millions
of cells per one procedure are used. It often requires
the expansion of the culture in vitro, which, together
with the compromised functional state of the donor’s
organism, may reduce the quality of cell preparations
[2-4]. Functional methods of MSC preparation for
clinical application imply the assessment of morphology,
cell survival, differentiation potential, and biological
safety [5, 6]. At the same time, additional investigations
are needed to study the effect of functional state of the
donor’s organism, cultivation conditions, and duration
on the quality of cellular products. When classifying
the markers of aging, various functional manifestations
such as metabolic and immune disorders, genome
instability, and epigenome alterations are distinguished
[7]. One of the hallmarks of aging is the accumulation
of the senescent cells unable to proliferate, resistant
to apoptosis, and possessing the characteristic
morphological and metabolic phenotype [3, 7].

Inducers of cellular senescence may include the
exhaustion of proliferative potential, accompanied
by critical telomere shortening; exposure to toxic,
genotoxic, and oxidative stress; induction of oncogenes;
inflammation; mitochondrial dysfunction; disruption of
epigenetic regulatory mechanisms, and other factors [3,
8-11]. It is important to note that the listed factors may
also be the secondary effects of cellular aging, and its
phenotypic manifestations at the cellular level can vary
in a wide range.

Due to its heterogeneity both in vitro and in vivo,
there is no specific universal marker of cell senescence
[12, 13]. Therefore, the investigation of cellular aging
dynamics in general relies on the analysis of several
markers, whose combination is inherent to this
process [3, 12]. These markers include the induction
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of senescence-associated B-galactosidase, activation
of the cell cycle inhibitors p16™K4A  p21CP!: reduced
expression of LMNB1 and HMGB2 proteins, which
shape the structure and architecture of the cell nucleus
[14-16]. In addition to the analysis of the mentioned
markers, functional tests can be performed to assess
proliferative potential, presence of the DNA damage or
apoptosis markers [12, 17].

The characteristic feature of the senescent cells is
secretion of proinflammatory cytokines, chemokines,
growth factors, and proteases, which compose
specific senescence-associated secretory phenotype
(SASP) [18]. The detection of SASP factors serve as
an indicator of cell aging, however, their abundance
varies significantly and depends, in particular, on
functional cause of the cell senescence [11]. Thus, a
classic approach to the exploration of cell senescence
is based on the analysis of sufficiently wide spectrum
of non-exclusive (non-specific) markers and conducting
functional tests. At the same time, the perspective
integral assessment of cell senescence by predictive
models built on the analysis of DNA methylation patterns,
transcriptomic data, and cell morphology is presently
being developed [19-21]. These predictive models may
consider variability of cell aging phenotype and usually
depend, to the lesser extent, on separate markers, which
makes them a promising analytical tool.

The aim of the study is to analyze manifestations
of selected markers of senescence on the models of
replicative senescence, stress-induced senescence,
and chronological aging of human mesenchymal
stem cells. Among the markers we assessed were
the level of expression of individual genes whose
expression dynamics are associated with aging, global
transcriptome alteration during chronological and in
vitro cellular aging; telomere length measurement
and changes in cell morphology and manifestations
of specific cytological markers of cellular aging. In this
study, we evaluated the applicability of these markers for
assessment of MSC aging as well as the limitations of
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methods used that could potentially bias the analysis. In
addition, we have analyzed the conceptual feasibility of
building predictive models for estimating chronological
age and duration of in vitro cultivation based on the
transcriptomic data and cell morphology analysis.

Materials and Methods

Cell cultures. Cell samples were obtained from
the donors with prior written informed consent. The
study was approved by the local ethics committee
of the Federal Center of Brain Research and
Neurotechnologies of the Federal Medico-Biological
Agency of Russia (Protocol No.7-5-22 of September 6,
2022).

In the study, MSCs (n=2) isolated from the Wharton’s
jelly of the healthy pregnant woman (38-40 weeks of
gestation); bone marrow derived MSCs (BM-MSCs)
from healthy donors aged 18-25 years (n=3) and
donors older than 65 years (n=3) obtained from the
mononuclear cell fraction of bone marrow, which was
isolated by gradient centrifugation (20 min, 400 g) in
the ficoll solution (PanEco, Russia). The cells were
cultivated in the DMEM/F12 medium (Servicebio, China)
supplemented with 15% fetal bovine serum (Capricorn,
Germany) and the antibiotic cocktail of penicillin
(100 units/ml) and streptomycin (100 ug/ml) (Gibco,
USA). Subculturing was performed at split ratio of 1:4.
Using flow cytometry, the expression of the following
MSC markers was analyzed: CD29, CD44, CD73,
CD90, CD105, CD34, CD45 (FITC/PE; Miltenyi Biotec,
Germany), and HLA-DR. The cells exhibited morphology
and immunophenotype characteristic of MSCs: CD29*,
CD44*, CD73*, CD90*, CD105*, CD34-, CD45".

For induction of the stress-induced cellular
senescence, MSCs were cultured until they reached
60% of confluence, after which the culture medium was
replaced with medium containing 200 uM hydrogen
peroxide (Dia-m, Russia). After 4 h of incubation, the
medium was removed, and MSCs were washed twice
with the phosphate-saline buffer. Then the cells were
incubated under the standard cultivation conditions for
3 days, after which they were used for further analysis.

Immunostaining and cytochemical analysis
of senescence-associated f-galactosidase. Cells
were cultured in 96-well plates for confocal microscopy
(SPL Lifesciences, South Korea) or on cover glasses
precoated with 0.1% gelatin solution (Sigma-Aldrich,
USA). Upon reaching the required confluency, the
samples were fixed in 4% formaldehyde solution
(Sigma-Aldrich, USA). The activity of senescence-
associated B-galactosidase was analyzed using the
previously described method [22]. For immunostaining,
the cells were incubated in the 0.1% Triton X-100
solution (Amresco, USA) for 30 min, after which they
were incubated in 1% BSA solution (Sigma-Aldrich,
USA) for 1 h. The following primary and secondary
antibodies were used for immunostaining: Ki-67 (Cell
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Signalling Technology, USA or Milteny Biotec, Germany);
H3K9me3 (Active Motif, USA); Donkey Anti-Mouse 1gG
H&L (Alexa Fluor® 488) (Abcam, Great Britain); Goat
Anti-Rabbit IgG H&L (Alexa Fluor® 568) (Abcam, Great
Britain); Goat anti-Rabbit IgG (H+L) (PE-Alexa Fluor™
647) (Invitrogen, USA). Hoechst 33342 (Invitrogen,
USA) was used for nuclear staining. The samples
were analyzed using the Olympus BX 51 fluorescence
microscope (Olympus Corporation, Japan) and Nikon A1
scanning laser confocal microscope (Nikon Corporation,
Japan).

Gene expression analysis using real-time PCR.
The Rizol reagent (diaGene, Russia) was used for
RNA isolation following the manufacturer’s protocol.
The complementary DNA was synthesized with reverse
transcription reagent kit (Biolabmix, Russia). The real-
time PCR was performed using BioMaster UDG HS-
gPCR SYBR Blue premixes (Biolabmix, Russia). The
ACTB and SDHA were used as reference genes for
normalization.

Below are the sequences of oligonucleotides used in
our work:

ACTB_F ACAGAGCCTCGCCTTTG, ACTB_
RCCTTGCACATGCCGGAG;

SDHA_F TTTGATGCAGTGGTGGTAGG,
SDHA_R CAGAGCAGCATTGATTCCTC;

p21_F TGGAGACTC TCAGGGTCGAAA, p21_R
GGCGTTTGGAGTG GTAGAAATC;

HMGB2_F CTTGGCACGATATGCAGCAA, HMGB2_R
CAGCCAAAGATAAACAACCATATGA;

LMNB1_F ACACTTCTGAACAGGATCAACC,
LMNB1_R CTGTGACACCAGCGTTTGC;

p16inkda_F CCCAACGCACCGAATAGTTA,
p16inkda_R ACCAGCGTGTCCAGGAAG;

IL6_F GTGGCTGCAGGACATGACAA, IL6_R TGA
GGTGCCCATGCTACATTT,

IL8_F AAGAGCCAGGAAGAAACCACC,
IL8_R CTGCAGAAATCAGGAAGGCTG;

IL1b_F CTGTCCTGCGTGTTGAAAGA, IL1b_R
TTGGGTAATTTTTGGGATCTACA;

PAI1-F CTCATCAGCCACTGGAAAGGCA, PAI1-R
GACTCGTGAAGTCAGCCTGAAAC;

MCP1_F CTTCTGTGCCTGCTGCTCATA, MCP1_R
CTTTGGGACACTTGCTGCTG;

MMP1-F TGGACGTTCCCAAAATCCTG, MMP1-R
AAGGGATTTGTGCGCATGTAG;

MMP3-F CTGCTGTTGAGAAAGCTCTG, MMP3-R
AATTGGTCCCTGTTGTATCCT.

Measurement of the telomere length using
real-time PCR. The real-time PCR was performed
with BioMaster UDG HS-gPCR SYBR Blue premixes
(Biolabmix, Russia) using primer pairs Tel-F CGGTTTGT
TTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT and Tel-
RGGCTTGCCTTACCCTTACCCTTACCCTTACCCTTA
CCCT specific to telomeric DNA repetitive sequence as
well as 36B4u CAGCAAGTGGGAAGGTGTAATCC and
36B4d CCCATTCTATCATCAACGGGTACAA specific
to the region of acidic ribosomal phosphoprotein PO
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gene on chromosome 12. Genome copy numbers and
the total length of the telomeric DNA were determined
relative to the DNA strand, represented by the plasmid
pAL2-T (Eurogene, Russia) bearing 36B4 genomic
region or human telomeric DNA fragment encompassing
14 repetitive units with the total length of 84 bp. The
following parameters of amplification were used: 50°C
for 5 min, 95°C for 10 min, 39 cycles of 95°C for 15 s and
60°C for 1 min.

Analysis of the next-generation transcriptomic
sequencing data and building predictive models
based on the transcriptome data. The datasets
deposited in the Gene Expression Omnibus repository
(GSE139073, GSE145008) were used in our work [23,
24]. Short-read alignment to the reference GRCh38
genome, preprocessing, and detection of gene
expression were performed using STAR, SAMtools,
and featureCounts programs [25-27]. To eliminate
batch effects in the transcriptome data, the ComBat-seq
method implemented in the sva package was applied
[28]. The statistical edgeR package was employed to
analyze the differential gene expression [29].

The predictive models of chronological age and in
vitro cultivation duration were created based on the
normalized values of gene expression. Genes, whose
expression level correlated significantly with the passage
or chronological age of the donors, were selected using
Spearman and Pearson coefficients of correlation
(coefficient >|0.5|, p-value-adjusted <0.05). The
regressive models were built using LASSO regression
and random forest regressor (RFR) from the Scikit-learn
package [30]. Data were divided into two sets: the training
set (80%, 84 sequencing samples) and the test set (20%,
22 sequencing samples). For the LASSO regression-
based model, automatic tuning of the hyperparameter
was applied with LassoCV on the training set. For the
RFR model, the base number of tree parameters was
used. The model quality was evaluated on the test set
which was not involved in the learning process.

Data preparation and training of the neural
network segmentation model. In the first stage, using
the segment anything image-recognition model followed
by manual validation and correction, nuclear masks were
generated for microscopic images of cell preparations of
umbilical MSCs at different culture passages (passage
range — 3—15, a total of 27,500 cells) [31]. At the next
stage, images were scaled to the equal resolution
and divided by a sliding window with a 246-pixel pitch
into the overlapping fragments 256x256 in size. The
window step provided an overlap of neighboring image
fragments by 10 pixels on each side, which reduced
boundary artifacts during the subsequent assembly of
the final segmentation map. To increase the model’'s
robustness to various exposure and contrast variations
of the images, augmentation methods were employed.
Among the transformations used were horizontal and
vertical flips, random adjustments of brightness and
contrast, as well as scaling with small shifts. The final
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dataset comprised 563 examples and was split in an 80
to 20% ratio for training and testing, providing a sufficient
number of samples for proper tuning of the network
parameters.

For solving the cell nucleus segmentation task, a
convolutional neural network architecture, DeepLabV3+
[32] was used. As the backbone network, EfficientNet-b0
[33] pretrained on the ImageNet dataset was selected,
providing the models with an initial representation of
low-level image features. Training was performed for 40
epochs, allowing the model to reach stable convergence.
During this period, the model was trained on a compute
node equipped with an NVIDIA A100 GPU, completing
the full training cycle in 3.5 h. To minimize the impact
of class imbalance (significant differences in nucleus
sizes and thin boundaries) and achieve more accurate
segmentation, a combined loss function was used,
which integrated two components: the BCE-Dice Loss
provided high sensitivity to the imbalance between
classes (nucleus/background) and accounted for spatial
consistency of predictions; the focal loss improved
training by reducing the influence of easily classified
examples. During training, a learning-rate scheduler
was employed, adjusting the learning rate from an
initial value of 1e-3 down to 1e-5 after each iteration,
ensuring a gradual reduction of the optimization step
and promoting stable convergence of the model.

For calculating quantitative morphometric charac-
teristics of nuclei, a binary mask obtained from the
DeeplLabV3+ segmentation results was passed to
the analysis function. Before the calculations, pixels
marked as “border” were excluded from the overall
mask, after which sequential erosion and dilation (by
20 pixels) were performed to remove thin artifacts and
merge broken contours. The parameters computed
for each nucleus: center coordinates (X, Y), area,
roundness, semi-major/semi-minor axes of the ellipse
and inclination angle, the Hausdorff distance. The
coefficient of belonging to the class was also established:
class 1 (passages 3-5), class 2 (passages 7-9), class 3
(passages 11-15). The executable scripts of the model
are deposited in the GitHub repository (https://github.
com/LabADTCellSeg/cellseg).

Results

Senescence-associated changes in  gene
expression profile. To assess the senescence-
associated gene expression dynamics in MSCs we
selected genes that might be considered as principle
regulators of the cell cycle and nucleus structure, as well
as genes encoding components of the proinflammatory
phenotype. We examined the expression levels of the
following genes — P16INK4a/lCDKN2A, P21CIP1/
CDKN1A, LMNB1, HMGB2, IL6, IL8/CXCLS, IL1B,
SERPINE1/PAI1, MCP1/CCL2, MMP1, MMP3.
Expression analysis was performed on a replicative
senescence model: independent umbilical cord MSCs
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subjected to long-term culture (n=2); on a chronological
aging model: BM-MSCs from the donors of different
ages: 20-25 years (n=2) and older than 65 years (n=2);
on the model of stress-induced cellular senescence:
umbilical cord MSCs exposed to hydrogen peroxide to
induce cellular senescence (n=2).

The genes encoding cyclin-dependent kinase
inhibitors (CDKN2A and CDKN1A) displayed a
similar dynamics across all examined samples. Their
expression increased during prolonged culture, in
response to oxidative stress and with increasing donor
age (Figure 1). Notably, the increase of expression was
more pronounced for CDKN1A, whereas changes of
CDKNZ2A expression were weaker and, in the context of
the replicative aging, insignificant. The expression level
of the genes encoding the nuclear architectural proteins
LMNB1 and HMGB2 consistently decreased both in
replicative and stress-induced senescence models as
well as during chronological MSC aging (see Figure 1).

The most dramatic changes were observed
during replicative senescence, where the decline in
expression over the culture period reached about
90% for both LMNB1 and HMGB2. It is noteworthy
that genes encoding the SASP components exhibited
different dynamics depending on the cause of cellular
senescence (see Figure 1). For example, peroxide-
induced senescence led to an increase in the expression
levels of all studied genes except MCP1, whereas
replicative senescence did not activate the genes
encoding matrix metalloproteinases MMP1 and MMP3.
It is also worth noting that analysis of the BM-MSCs from
the donors of different ages did not reveal age-related
changes at the expression levels of the cytokine genes
IL-6, IL-1B, CXCL8 was weakly activated in the cells of
the elderly donors. The SERPINE1/PAI1 gene, encoding
PAI-1 protein, appeared to be most stable in the context
of aging-associated dynamics of gene expression.

Various manifestations of senescence-associated
proinflammatory phenotype depending on the type
of cellular senescence are generally expected.
Nevertheless, to independently verify the obtained
results, we searched for the publicly available high-
throughput transcriptome sequencing datasets of
cultured MSCs that include donor age and cell passage
information in the Gene Expression Omnibus repository.
As a result, a dataset (n=37, age 3—-85 years, median
value 47 vyears; Table 1) has been prepared and
correlation analysis of expression changes in the tested
genes with prolonged cultivation and donor age has
been performed. According to the obtained results,
SERPINE1/PAI1, CDKN1A, and CDKNZ2A genes
demonstrated a positive correlation with culture duration,
whereas LMNB1 and HMGB2 showed a negative
correlation (Spearman correlation, p<0.05; Table 2). The
correlation with the donor age was detected for CDKN1A
and LMNB1 genes when no correction for multiple
testing was applied (Table 3). Differential expression
analysis in BM-MSC samples from donors aged 20—
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35 years (n=7) and donors aged 60-85 years (n=13)
has identified only 50 differentially expressed genes
(llogFC|>2, p<0.05) (Table 4). It is highly probable that
donor-dependent variability of gene expression patterns
in MSCs can be quite substantial, making it difficult to
identify transcriptional markers of chronological aging.
Nevertheless, the expression of individual genes might
be applicable for assessing cellular senescence in vitro.

To conceptually validate the applicability of
transcriptomic data analysis for predicting donors’
chronological age or the duration of cell cultivation, we
prepared corresponding predictive regression models
based on two approaches: LASSO regression and
RFR. Genes were selected as predictors based on
Pearson and Spearman correlation coefficients, in order
to account for both linear and monotonic relationships
between features and the target variables —
chronological age and cultivation duration. As a result,
the models based on LASSO regression and RFR have
demonstrated close performance: R?=0.755; MAE=9.858
years, and R?=0.742, MAE=10.060 years, respectively
(Table 5). The LASSO regression-based model has
demonstrated the highest accuracy of the cell passage
prediction on the test sample: R?=0.583; MAE=0.508
passages (Table 6).

Analysis of telomere length for cell senescence
assessment. One of the traditional markers of
assessing cellular aging is the analysis of telomere
length. For this analysis we used the real-time PCR
method. Samples of umbilical cord MSCs of different
passages and BM-MSC samples from the donors aged
20-25 years (n=2) and older than 65 years (n=2) were
analyzed on the sixth cultural passage. This method
allowed to detect dynamics of the telomere shortening
during MSCs cultivation. Statistically significant
differences were observed after seven passages
(Figure 2). At the same time, when samples from the
donors of various ages were compared, no reliable
differences were found.

Analysis of nuclear morphology as a marker
of cell senescence. To evaluate the dynamics of the
nuclear morphology and the expression of individual
protein markers during the cell aging, we have analyzed
BM-MSC samples of three donors from the young
(18-25 years) and older age groups (over 65 years);
umbilical cord MSCs exposed to continuous cultivation;
and MSCs treated with hydrogen peroxide to induce
senescence. In the cytochemical study of senescence-
associated [-galactosidase activity (Figure 3), an
increase in its activity was observed during replicative
and stress-induced senescence (Figure 3, (b), (c)).
When comparing MSCs obtained from the donors of
different ages, the differences were not pronounced
(Figure 3 (a)).

Immunostaining analysis of the proliferation marker
Ki-67 (Figure 4 (a)—(c)) allowed us to detect a relative
decrease of the number of Ki-67-positive cells
associated with cultivation duration (Figure 4 (a), (d)).
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Figure 1. Relative normalized gene expression measured by RT-qPCR in the MSC
cultures:

(a) comparison of gene expression in the cultures of MSCs (passage 6) derived from young
donors (18-25 years, n=3) and elderly donors (>65 years, n=3); (b) comparison between the
umbilical MSCs (passage 7) cultured under standard conditions and after 4-hour treatment
of 200 uM solution of hydrogen peroxide; (c) gene expression dynamics during cultivation of
umbilical MSCs under standard conditions, measurements taken at passages 6, 11, 14, and 18
are presented; * p<0.05; ** p<0.005; *** p<0.0005; NS — p=0.05, Student’s t-test

D.A. Kalashnikova, S.E. Romanov, D.A. Maksimov, L.A. Plokhikh, R.Yu. Epifanov, ..., P.P. Laktionov



ADVANCED RESEARCHES

Table 1
The list of the RNA-seq datasets used in the study

Donor identification

Sample identifier Donor age Gender Passage number
Project identifier — GSE139073
SRR10307337 73 F 4 777
SRR10307338 73 F 4 777
SRR10307339 48 F 4 819
SRR10307340 48 F 4 819
SRR10307341 75 F 4 821
SRR10307342 75 F 4 821
SRR10307343 24 M 3 126
SRR10307344 24 M 3 126
SRR10307345 16 F 3 127
SRR10307346 16 F 3 127
SRR10307347 61 M 3 237
SRR10307348 61 M 8 237
SRR10307349 25 F 3 264
SRR10307350 25 F 3 264
SRR10307351 63 M 3 265
SRR10307352 63 M 3 265
SRR10307353 48 F 3 276
SRR10307354 48 F 3 276
SRR10307355 82 F 3 278
SRR10307356 82 F 3 278
SRR10307357 35 F 3 285
SRR10307358 35 F 3 285
SRR10307359 45 F 3 289
SRR10307360 45 F 3 289
SRR10307361 48 M 3 293
SRR10307362 48 M 3 293
SRR10307363 47 F 3 308
SRR10307364 47 F 3 308
SRR10307365 1 F 3 316
SRR10307366 71 F 3 316
SRR10307367 51 M 3 324
SRR10307368 51 M 3 324
SRR10307369 57 M 3 329
SRR10307370 57 M 3 329
SRR10307371 80 M 3 336
SRR10307372 80 M 3 336
SRR10307373 85 M 3 354
SRR10307374 85 M 3 354
SRR10307375 37 M 3 357
SRR10307376 37 M 3 357
SRR10307377 68 M 3 374
SRR10307378 68 M 3 374
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Continuation of the Table 1

Donor identification

Sample identifier Donor age Gender Passage number
SRR10307379 78 M 3 378
SRR10307380 78 M 3 378
SRR10307381 68 F 3 386
SRR10307382 68 F 3 386
SRR10307383 65 F 3 660
SRR10307384 65 F 3 660
SRR10307385 69 F 3 651
SRR10307386 69 F 3 651
SRR10307387 73 F 3 777
SRR10307388 73 F 3 77
SRR10307389 33 M 3 784
SRR10307390 33 M 3 784
SRR10307391 24 M 6 126
SRR10307392 24 M 6 126
SRR10307393 16 F 6 127
SRR10307394 16 F 6 127
SRR10307395 35 F 6 285
SRR10307396 35 F 6 285
SRR10307397 43 M 6 293
SRR10307398 43 M 6 293
SRR10307399 51 M 6 324
SRR10307400 51 M 6 324
SRR10307401 88 M 6 784
SRR10307402 88 M 6 784

Project identifier — GSE145008
SRR11050732 14 F 3 1
SRR11050733 14 F 3 1
SRR11050734 14 F 3 1
SRR11050735 14 F 3 1
SRR11050736 20 M 3 2
SRR11050737 20 M 3 2
SRR11050738 20 M 3 2
SRR11050739 20 M 3 2
SRR11050740 9 F 3 3
SRR11050741 9 F 3 3
SRR11050742 9 F 3 3
SRR11050743 9 F 3 3
SRR11050744 B M 3 4
SRR11050745 5 M 3 4
SRR11050746 9 F 3 B
SRR11050747 9 F 3 B
SRR11050748 9 F 3 B
SRR11050749 9 F 3 5
SRR11050750 13 F 3 6
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End of the Table 1

Donor identification

Sample identifier Donor age Gender Passage P e
SRR11050751 13 F 3 6
SRR11050752 13 F 3 6
SRR11050753 13 F 3 6
SRR11050754 29 M 3 7
SRR11050755 29 M 3 7
SRR11050756 29 M 3 7
SRR11050757 29 M 3 7
SRR11050758 17 M 3 8
SRR11050759 17 M 3 8
SRR11050760 33 F 3 9
SRR11050761 33 F 3 9
SRR11050762 33 F 3 9
SRR11050763 33 F 3 9
SRR11050764 13 F 3 10
SRR11050765 13 F 3 10
SRR11050766 13 F 3 10
SRR11050767 13 F 3 10
SRR11050768 3 F 3 11
SRR11050769 3 F 3 11
SRR11050770 3 7 3 1"
SRR11050771 3 7 3 1"

Table 2

Correlation of expression of gene markers of cell senescence with the duration
of bone marrow MSC cultivation according to transcriptomic data

Spearman correlation

p-value corrected

L coefficient AL by the Benjamini-Hochberg method
SERPINE1/PAI1 0.45 1.04E-06 0.000053
HMGB2 -0.33 0.00049 0.0052
LMNB1 -0.31 0.0013 0.011
CDKN1A 0.31 0.0015 0.012
CDKN2A 0.30 0.0017 0.014
CXCL8 0.25 0.011 0.054
CcCL2 0.22 0.023 0.090
IL6 0.22 0.024 0.091
IL1B 0.12 0.22 0.44
MMP3 -0.10 0.29 0.53
Table 3

Correlation of expression of gene markers of cell senescence with the age
of bone marrow MSCs donors according to transcriptomic data

Gene

CDKN1A

Measurable Metrics of Mesenchymal Stem Cell Aging

0.21

Spearman correlation
coefficient

p-value

0.027

p-value corrected
by the Benjamini-Hochberg method

0.14
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End of the Table 3

Gene

LMNB1
HMGB2
MMP3
CXCL8

SERPINE1/PAI1

CCL2
IL6
IL1B
CDKN2A

Spearman correlation
coefficient

-0.21
-0.19
0.17
0.17
0.11
0.10
0.045
-0.024
-0.014

p-value

0.032
0.050
0.078
0.086
0.27
0.29
0.65
0.80
0.89

p-value corrected

by the Benjamini-Hochberg method

0.16
0.21
0.27
0.28
0.53
0.54
0.82
0.91
0.95

Table 4

Differentially expressed genes in bone marrow MSC RNA-seq samples
from donors aged 20-35 years and donors aged 60-85 years

Gene
IDO1
IGKC
CSF3
CXCL9
IGHG1
IGLC2
EEF1DP5
IGHA1
IGKV4-1
MYOD1
MUC5AC
IGHG3
IGLC3
IGHG2
GBX2
IGLV3-19
IGLV3-21
IGLV2-14
IGHM
MYOG
LAIR1
TMEM176B
ALKAL1
IGLV2-11
IGKV3-20
GCGR
IGKV3-15
ABO
SHD

14 CTM 2025 [ vol. 17/ No.5

logFC
—6.74201
-6.03135
-6.00031
-5.91117
-5.75566
-5.718
-5.41503
-5.19498
-4.98465
-4.95005
-4.60036
-4.53654
—4.45419
-4.45175
-4.38756
-4.23956
-4.16984
-3.91505
-3.60855
-3.60479
-3.57773
-3.57146
-3.54348
-3.49343
-3.40265
-3.23964
-3.19646
-3.19078
-3.17845

logCPM
0.130015
1.491429
-0.9205
-0.96128
-0.59634
-1.29152
-0.55565
-1.61628
-1.7487
-1.06079
-1.35788
-1.75797
-1.9868
-1.99772
-1.50842
-2.06218
-2.11667
-2.21161
-1.94161
-1.94571
-2.32914
-0.45584
-2.1191
-2.32861
-2.3715
-2.16184
-2.42303
-1.62966
-1.93949

LR
17.82139
33.98931

13.5434
13.78282
36.87759
36.70287
13.93917
29.47482
30.30424
20.98677
14.91265
22.59954
20.78149
21.74035
27.1453
20.88334
21.59141
19.31244
13.95801
13.91752
24.23182

221179
18.05065
16.19594
15.44576
17.18263

17.2754
25.39491
13.36813

p-value
2.43E-05
5.54E-09
0.00023311
0.000205204
1.26E-09
1.38E-09
0.000188822
5.66E-08
3.69E-08
4.62E-06
0.000112605
2.00E-06
5.15E-06
3.12E-06
1.89E-07
4.88E-06
3.37E-06
1.11E-05
0.000186939
0.000191009
8.54E-07
2.56E-06
2.15E-05
5.71E-05
8.49E-05
3.40E-05
3.23E-05
4.67E-07
0.000255936

FDR
0.010439
4.51E-05
0.038058
0.035238
2.66E-05
2.66E-05
0.034148
0.000181
0.000151
0.004005

0.02448
0.002714
0.004046
0.003496
0.000514
0.004005
0.003535
0.006177
0.033957
0.034342
0.001396
0.003122

0.00947
0.016806
0.021421

0.01235
0.012124
0.000909
0.039473
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR
TNMD -3.12462 -1.51833 26.04848 3.33E-07 0.000846
MTND1P23 -3.10661 -0.32258 14.56727 0.000135243 0.027729
IGLV2-23 -2.973 —2.26645 12.53699 0.000398975 0.049474
CLDN5 -2.81786 —2.22574 12.53175 0.000400096 0.049474
IGLV6-57 -2.75739 -2.51936 15.10868 0.000101495 0.023174
KRTAPT7-1 -2.70262 -2.40336 15.37327 8.82E-05 0.021723
ZFP42 -2.62331 -2.1215 13.22307 0.000276524 0.041179
SCN5A -2.5801 -1.27536 33.64228 6.62E-09 4.51E-05
NPPB -2.43186 -1.75835 15.13791 9.99E-05 0.022947
LINCO1012 -2.32618 -2.10984 25.94058 3.52E-07 0.000846
KLHL34 -2.29995 -2.32066 13.33429 0.000260597 0.039816
CYP19A1 —2.27558 -2.59913 14.27137 0.000158254 0.031096
CACNA1S -2.24875 -2.60108 13.49961 0.000238613 0.038058
FAM181B -2.20795 -1.61487 21.35758 3.81E-06 0.003709
TREML3P —2.20459 -1.64722 18.8168 1.44E-05 0.007261
SLC51B -2.08324 -2.08956 20.25594 6.77E-06 0.004944
TRIM72 -2.07456 —2.22947 14.87855 0.000114659 0.024664
HOXC12 -2.02755 0.297099 25.10952 5.42E-07 0.000963
GPX1P2 -2.02304 -2.63327 12.67682 0.000370216 0.048132
LINC03004 -2.00501 -1.67803 13.22407 0.000276377 0.041179
CRTAC1 -1.98816 -1.90343 2445347 7.61E-07 0.001296
GPR83 -1.95678 -2.02969 19.58557 9.62E-06 0.006084
NKX2-2 -1.95335 -1.98009 15.052 0.000104589 0.023548
PDE1B -1.93211 -2.01438 13.0485 0.000303527 0.04321
HEY2-AS1 -1.89023 -2.0207 12.65258 0.000375047 0.048415
NOTCH4 -1.88533 -2.50867 12.50129 0.00040667 0.049615
MYH14 -1.88023 0.589392 15.27985 9.27E-05 0.022663
ZNF728 -1.87424 -2.18341 14.43592 0.00014501 0.02877
ZNF99 -1.8592 -2.06605 19.20551 1.17E-05 0.00634
WNK2 -1.80691 -2.04595 16.79481 4.16E-05 0.013727
RSAD2 -1.79102 -1.69653 12.85613 0.000336376 0.046134
DUSP15 -1.73147 -0.94925 22.6271 1.97E-06 0.002714
SUNO1 -1.73101 -1.89769 16.7206 4.33E-05 0.013937
GIPC3 -1.70111 -1.47442 35.46025 2.60E-09 2.66E-05
XIRP1 -1.70079 -0.95231 22.31142 2.32E-06 0.002961
LINC02182 -1.70015 -1.38832 32.94003 9.50E-09 4.86E-05
PCSK1N -1.69436 -0.279 35.46079 2.60E-09 2.66E-05
RBM12B-DT -1.68636 -2.31889 13.81687 0.000201519 0.035154
APCDD1 -1.6716 -0.15046 22.09332 2.60E-06 0.003122
TMEM63C -1.65885 -1.67849 14.07606 0.000175564 0.032973
DUSP26 -1.65032 -1.58372 17.78676 2.47E-05 0.01052
GDF10 -1.6433 -0.98772 16.74222 4.28E-05 0.013937
PHLDA2 -1.6418 0.535531 15.23313 9.50E-05 0.022711
LTK -1.63865 -1.58262 21.49046 3.56E-06 0.003627
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR

LINC00937 -1.59819 -2.06279 19.78999 8.64E-06 0.005791
LHX4 -1.59619 -2.04904 15.95387 6.49E-05 0.017804
TRIM67 -1.59194 -0.12995 13.15763 0.000286351 0.041865
PLXDC1 -1.56106 -1.03286 27.39377 1.66E-07 0.000485
L1CAM -1.52989 0.276793 14.43591 0.00014501 0.02877
SERPINA12 -1.5203 -0.61139 29.44086 5.76E-08 0.000181
SLC30A3 -1.51219 0.315307 18.86388 1.40E-05 0.007172
FAM162B -1.50741 -1.53032 15.20718 9.63E-05 0.022759
CMPK2 -1.50377 -1.52247 15.84972 6.86E-05 0.018562
HSPB3 -1.50214 -0.89656 22.53947 2.06E-06 0.002714
TMEM191B -1.49286 -2.02685 13.79539 0.000203835 0.035154
TMEM156 -1.45208 -1.7143 12.83349 0.00034047 0.046385
TMOD1 -1.43636 -0.74442 21.17288 4.20E-06 0.00393
GPAT2P1 -1.40596 -1.70658 12.56297 0.000393465 0.049474
GPR27 -1.40062 0.30417 19.32474 1.10E-05 0.006177
CDH8 -1.39788 -0.37092 17.14553 3.46E-05 0.01235
CACNA2D3 -1.39769 2.11436 14.7683 0.000121562 0.025479
HEY?2 -1.39228 2.025565 19.43099 1.04E-05 0.006177
ST8SIA2 -1.39093 -0.49211 17.53827 2.82E-05 0.010961
LINC02056 -1.38857 -1.62073 12.69264 0.000367098 0.048132

LRP2 -1.37985 -1.28367 23.2891 1.39E-06 0.00211
TGFA -1.37091 -0.4596 25.61174 4 17E-07 0.000853
WFDC1 -1.36441 2.938302 15.38643 8.76E-05 0.021703
HES4 -1.34238 2.562402 17.64995 2.66E-05 0.010735
PTH1R -1.33645 0.127042 20.95353 4.71E-06 0.004005
SYN2 -1.26943 1.567083 12.94207 0.000321279 0.044663
HOXC13 -1.26823 -0.37058 19.43103 1.04E-05 0.006177
RAI2 -1.26422 -0.02813 12.60263 0.000385204 0.048893
LONRF2 -1.21634 0.213618 16.65195 4.49E-05 0.014227
HEYL -1.2162 2.019352 18.99141 1.31E-05 0.00688
CSPG5 -1.21002 -1.72016 18.2359 1.95E-05 0.008993
HEY1 -1.20268 -0.67351 13.30536 0.000264648 0.040107
SLFN14 -1.19595 -1.77817 13.91193 0.000191579 0.034342
ADCY?2 -1.1846 2.069172 15.06383 0.000103936 0.023548
RASGRP2 -1.17855 -0.48357 14.0089 0.000181948 0.033347
HOXC13-AS -1.17836 -1.28119 15.17852 9.78E-05 0.022901
WIPF3 -1.17172 -0.55415 19.45319 1.03E-05 0.006177
PDZD4 -1.16655 0.813909 17.21875 3.33E-05 0.01235

CCDC3 -1.16413 1.018813 15.73623 7.28E-05 0.0192
NPTX1 -1.15928 -1.25645 13.03203 0.000306208 0.04321
CNTN1 -1.15545 0.424462 12.51781 0.000403091 0.049474
ADAP1 -1.1469 -0.05287 25.73178 3.92E-07 0.000853
ITIH5 -1.13921 6.341922 13.5147 0.000236702 0.038058
LINC00547 -1.13275 0.376618 17.9216 2.30E-05 0.010009
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR

SOX18 -1.12464 1.243256 15.23793 9.48E-05 0.022711
LGALS9 -1.11907 -0.08648 14.93291 0.000111402 0.024348
LINCO1362 -1.07221 -1.14826 16.16752 5.80E-05 0.016806
NAP1L2 -1.06613 -1.41077 18.36179 1.83E-05 0.008698
SLC24A3 -1.06481 3.570396 14.93962 0.000111007 0.024348
KNDC1 -1.04924 -0.4902 12.71091 0.000363528 0.048132
TMEM151A -1.04248 0.0769 13.21936 0.000277072 0.041179
CX3CL1 -1.0329 —0.55568 19.79463 8.62E-06 0.005791
GNAO1 -1.02459 0.68505 12.50729 0.000405366 0.049604
KCNB1 -1.00315 1.293309 13.64308 0.000221055 0.036797
KL -0.99468 -1.5026 12.69037 0.000367543 0.048132
CDH15 -0.96785 3.09543 21.71385 3.16E-06 0.003496
FGFR3 -0.96435 1.855654 18.18702 2.00E-05 0.008993
RTN1 -0.95672 -0.85915 13.51578 0.000236566 0.038058
SORBS1 -0.91465 0.58739 12.917 0.000325611 0.045108
GPRC5C -0.91125 1.346111 17.15483 3.45E-05 0.01235
FOLR1 -0.90256 0.48096 12.62354 0.000380919 0.048707
ADCY1 -0.89133 0.016148 16.82263 4.10E-05 0.013637
CD247 -0.88122 -0.95038 20.89899 4.84E-06 0.004005
PHOSPHO1 -0.87691 -1.10453 19.19722 1.18E-05 0.00634
RNASEK -0.8769 -1.24948 15.80022 7.04E-05 0.018682
LRRC3 -0.87242 2.006731 17.69325 2.60E-05 0.010735
ACAN -0.87036 10.49467 19.38983 1.07E-05 0.006177
WDR87BP -0.86428 0.707841 14.02695 0.000180209 0.033327
AKAP6 -0.85959 2.440635 18.39394 1.80E-05 0.008698
TSPAN1S -0.85178 2428343 15.81195 7.00E-05 0.018682
CARMIL2 -0.83114 -0.62056 12.58457 0.000388945 0.049215
FAM83H -0.80075 -0.53574 19.45025 1.03E-05 0.006177
MARK1 -0.79935 1.851002 17.57187 2.T7TE-05 0.010872
TPD52 -0.79811 0.520582 15.93241 6.56E-05 0.017887

DYSF -0.79424 5.192088 14.96679 0.00010942 0.0243
FAM169A -0.77762 -0.93632 13.44043 0.00024626 0.038563
NOG -0.77472 3.337352 13.13857 0.000289278 0.042065
ADRA1B -0.77342 -0.31774 12.53894 0.000398558 0.049474
SHANK?2 -0.76822 2.303994 13.88607 0.000194233 0.034666
BRSK2 -0.74595 0.213741 13.98842 0.00018394 0.033562
DNAH10 -0.73965 -0.88267 13.19353 0.000280917 0.041599
RYR1 -0.73799 -0.41911 13.08336 0.00029793 0.042876
LEPR -0.73782 8.314245 13.50392 0.000238066 0.038058
SHC4 -0.73431 1.564619 15.21512 9.59E-05 0.022759
GIPR -0.73217 0.662796 15.49546 8.27E-05 0.021049
ENPEP -0.71631 1.032989 14.88719 0.000114135 0.024664
LINC02600 -0.71439 -0.12262 13.67039 0.000217862 0.036643
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR

RASL11A -0.70716 2.188546 14.50159 0.000140041 0.028335
NPTXR -0.707 5.032025 13.53486 0.000234173 0.038058
TMEMb54 -0.69739 0.126718 13.38037 0.000254272 0.039365
FOXCUT -0.69%4 0.89011 16.11985 5.95E-05 0.017113
ARHGEF16 -0.68756 1.494923 12.51938 0.000402753 0.049474
FAMB89A -0.68137 3.487588 15.6699 7.54E-05 0.019758
GPAT2 -0.67632 1.848891 14.75442 0.00012246 0.025536
ITGAL -0.6678 0.188307 15.82416 6.95E-05 0.018682
IGFBP2 -0.66553 8.122881 13.76376 0.000207297 0.035238
CASQ1 -0.65423 -0.07883 13.49412 0.000239312 0.038058
IL7TR -0.64593 4.366858 13.44428 0.000245754 0.038563
SLC16A14 -0.6331 0.173104 13.79726 0.000203632 0.035154
MICA -0.6268 2.579888 17.04439 3.65E-05 0.012756
GP1BB -0.614 2.047757 15.41856 8.61E-05 0.021598
DGKG -0.61299 1.438626 14.59997 0.000132917 0.027437

JPH2 -0.60239 5.92529 13.87562 0.000195316 0.0347
EDN1 -0.59572 2.794714 12.7033 0.00036501 0.048132
CCDC158 -0.5949 1.517501 14.05138 0.000177883 0.033047
ADRA2C -0.59458 3.684148 12.98359 0.000314233 0.043983
EGFL7 -0.59008 3.282763 14.19471 0.000164834 0.032081
ITGB1BP2 -0.58525 -0.13723 13.22001 0.000276977 0.041179
LYL1 -0.58504 0.516555 12.62508 0.000380605 0.048707
ZSWIMS -0.5718 0.176161 15.03511 0.000105529 0.023569
QPRT -0.57054 1.791185 20.97442 4.65E-06 0.004005
CKB -0.54894 6.4886 2115728 4.23E-06 0.00393
SYNGR?2 -0.54869 4.063023 17.63299 2.68E-05 0.010735
C3orf70 -0.53617 2.258994 14.40221 0.000147629 0.029148
SEPTINS -0.53548 5.850167 17.71423 2.57E-05 0.010735
LGMN -0.5295 7.390066 13.44756 0.000245325 0.038563
CRIP1 -0.5278 5.915864 15.04709 0.000104862 0.023548
LINC00702 -0.52483 1.68425 18.78584 1.46E-05 0.007289
SLC37A1 -0.51686 2.285977 15.25594 9.39E-05 0.022704
SRRM3 -0.50967 1.020992 12.7151 0.000362716 0.048132
ZNF469 -0.50237 6.320352 21.44639 3.64E-06 0.003627
CRYAB -0.50215 8.082892 18.24895 1.94E-05 0.008993
DNAJC6 -0.50021 3.746198 16.17961 5.76E-05 0.016806
PPFIA3 -0.49208 1.786657 18.40639 1.78E-05 0.008698
CGREF1 -0.48846 3.916935 15.49059 8.29E-05 0.021049
DNAHS -0.48696 1.114283 14.10597 0.000172794 0.032848
HES6 -0.48063 1.574922 20.41189 6.24E-06 0.00464
CSPG4 -0.47527 7.532437 13.59239 0.000227104 0.037427
IRAG1 -0.45697 4.251489 12.48452 0.000410338 0.04986
TBXA2R -0.45102 2.367274 17.31301 3.17E-05 0.011997
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Continuation of the Table 4

Gene

HS6ST1
DMPK
LYSMD2
ANKRD9
NOTCH3
1SG20
ADORA2B
GPC4
HSPB1
CYB5R1
SLC2A6
MSRB1
ENDOD1
SIX2
RAVER2
TUBB2A
MIEN1
RGS19
PSEN2
GSN
MAP2K3
MGATS
SNTA1
PTPN3
SORT1
SRD5A1
TPST2
CALM1
ROGDI
DAB2IP
DIRAS1
FAM219A
EHD1
BCAP31
CTNNB1
RHOC
HDACS
INPP5A
CUEDC1
LASP1
FEZ2
IGHMBP2
EMP3

Measurable Metrics of Mesenchymal Stem Cell Aging

logFC

-0.44571
-0.44482
-0.41007
-0.40992
-0.40918
-0.39744
-0.39485
-0.39132
-0.38434
-0.38118
-0.3756
-0.3701

-0.36543
-0.36102
-0.35903
-0.34554
-0.34286
-0.33713
—0.33481
-0.32799
-0.32026
-0.30153
-0.29562
-0.29194
-0.29142
-0.28284
-0.28145
-0.27529
-0.27022
-0.26752
-0.2544

-0.25096
-0.24981
—0.24721
-0.24353
-0.23978
-0.23914
-0.23369
-0.23047
-0.22691
-0.22165
-0.22138
-0.22047

logCPM

5.327054
6.388112
1.900144
4.467814
9.646443
2672711
2.24752
6.164633
9.410244
5.770637
4.189715
5.511516
6.610153
5.707384
4.2544
5.187744
1.951609
3.360489
4.018959
9.22319
6.621549
6.814577
5.384169
3.537507
7.62097
4729072
6.976341
8.260706
4.824984
5.951331
5.512156
5.24701
7.699704
7.121209
8.746768
8.846199
5.900239
5.185924
6.109555
9.744295
6.185835
4.300589
7.715333

LR

13.75934
29.74076
13.60586
17.67927
15.16878
13.30319
14.86052
16.08634
22.73045
16.1487
15.40244
14.55164
14.06412
13.44129
19.80343
14.4532
13.04021
12.52686
19.30059
21.84951
25.12837
15.61065
12.61557
18.04734
16.69438
25.68423
18.20642
17.00462
16.59218
17.01764
12.89333
21.62318
23.91399
13.18563
16.89087
13.7611
15.55691
12.83613
17.66143
18.35837
13.57329
14.06617
12.61791

p-value

0.000207785
4.94E-08
0.00022548
2.61E-05
9.88E-05
0.000264954
0.000115761
6.05E-05
1.86E-06
9.94E-05
8.69E-05
0.00013637
0.000176682
0.000246147
8.58E-06
0.000143686
0.000304874
0.000401143
1.12E-05
2.95E-06
5.36E-07
7.78E-05
0.000382546
2.15E-05
4.39E-05
4.02E-07
1.98E-05
3.73E-05
7.86E-05
3.70E-05
0.000329755
3.32E-06
1.01E-06
0.000282103
3.96E-05
0.000207591
8.01E-05
0.00033999
2.64E-05
1.83E-05
0.000229427
0.00017649
0.000382068

FDR

0.035238
0.000181
0.03731

0.010735
0.022945
0.040107
0.024756
0.017248
0.002714
0.022945
0.021651
0.027729
0.032973
0.038563
0.005791
0.02877

0.04321

0.049474
0.006177
0.003444
0.000963
0.020257
0.048707
0.00947

0.014021
0.000853
0.008993
0.012807
0.020327
0.012807
0.045378
0.003535
0.001584
0.041624
0.013263
0.035238
0.020579
0.046385
0.010735
0.008698
0.037658
0.032973
0.048707
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR
PREB -0.2187 5.839774 12.72631 0.000360548 0.048132
DDRGK1 -0.21732 5.515303 15.17375 9.81E-05 0.022901
HDAC11 -0.20866 4.352068 17.601 2.72E-05 0.010811
PITPNM1 -0.20846 5.371332 13.86789 0.000196121 0.0347
LDLRAP1 -0.20678 5.838397 13.05207 0.000302949 0.04321
ARHGEF10L -0.20518 5.919073 12.77922 0.000350491 0.04727
NPTN -0.20116 8.061508 14.95693 0.000109993 0.0243
SNX11 -0.20075 4.663461 17.13849 3.48E-05 0.01235
NAPA -0.19531 4.064688 14.61631 0.000131769 0.027338
TMEM109 -0.19072 6.596263 14.83157 0.000117551 0.024893
SPRYD3 -0.18655 6.312584 12.77161 0.000351921 0.04727
MAPRE3 -0.17976 4.672064 12.48096 0.000411121 0.04986
KIF1C -0.17932 8.266324 19.72121 8.96E-06 0.005907
PPP2CB -0.17822 6.651028 16.61981 4.57E-05 0.014249
RHBDD?2 -0.17806 5.673687 19.5745 9.68E-06 0.006084
SELENOS -0.17695 6.242757 13.12572 0.00029127 0.042065
SLC27A4 -0.17567 5.214289 12.51806 0.000403037 0.049474
ARMCX3 -0.17348 6.995281 13.15464 0.000286808 0.041865
RMDN3 -0.16785 5427733 13.50392 0.000238065 0.038058
LRRFIP2 -0.15981 6.355986 13.13037 0.000290548 0.042065
PPP2R1A -0.15488 7.886332 12.99828 0.000311777 0.043789
SEC14L1 -0.15293 6.814728 15.27059 9.32E-05 0.022663
EHBP1L1 -0.14069 7.671404 14.1189 0.000171611 0.032848
BLCAP -0.13762 6.3339 13.40166 0.000251401 0.039069
LZTS2 -0.13014 6.888952 12.78966 0.000348541 0.04727
GART 0.144891 5.426869 16.73461 4.30E-05 0.013937
NUDT21 0.146174 5.944158 12.67975 0.000369637 0.048132
PTGR3 0.151359 4.48144 12.68544 0.000368514 0.048132
HEATR6 0.168375 4.60623 16.04382 6.19E-05 0.017446
PSIP1 0.174873 5.351493 12.7672 0.00035275 0.04727
CMTR2 0.176201 4585269 17.05302 3.64E-05 0.012756
RAD21 0.190763 5.803668 12.67307 0.00037096 0.048132
FUT8 0.197327 5.011198 12.5474 0.000396759 0.049474
CARD8 0.223999 3.931231 16.5491 4.74E-05 0.014568
S100PBP 0.246188 4.671997 20.87633 4.90E-06 0.004005
USP28 0.249203 4.178656 20.00123 7.74E-06 0.005454
BDH?2 0.253192 3.366615 14.47918 0.000141717 0.028533
CASP4 0.256899 4.924556 20.10625 7.33E-06 0.005253
ZCCHC8 0.260018 4.188864 20.62361 5.59E-06 0.004311
B4GALTS 0.262408 5.952676 14.25092 0.000159983 0.031285
IRAK1BP1 0.275405 2.588981 13.84753 0.000198258 0.034817
IFI16 0.278147 6.395011 14.08274 0.000174942 0.032973
AMMECR1 0.278167 4.031016 13.71351 0.000212917 0.035959
SH2D4A 0.295128 5.667351 13.02964 0.000306599 0.04321
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR
DPH5-DT 0.301347 2.46994 16.22833 5.61E-05 0.016806
TMEM116 0.310949 2.121463 13.07266 0.000299638 0.04297

DPYD 0.325722 5.376649 13.1719 0.000284178 0.041779

SRPX 0.330869 5.435651 18.19592 1.99E-05 0.008993
ARHGEF3 0.366546 2.935045 16.02308 6.26E-05 0.017517
SERACT 0.374418 5.547421 16.32552 5.33E-05 0.016149

CDK14 0.379537 5.705607 16.07847 6.08E-05 0.017248
GLT8D2 0.386548 4708298 16.93926 3.86E-05 0.013037

ESR1 0.387471 1.004918 13.63949 0.000221478 0.036797

FGF2 0.388723 4.715732 17.35999 3.09E-05 0.011813
PLSCR1 0.393244 3.954516 19.12633 1.22E-05 0.006494
RUNX1T1 0.395472 3.164303 13.35076 0.000258318 0.039691

IGFBP3 0.398171 12.15029 16.00963 6.30E-05 0.017522
FMNL2 0.401245 4579389 13.79527 0.000203849 0.035154
ZEB1-AS1 0.405514 1.250406 16.35924 5.24E-05 0.015982
RHOBTB3 0.421879 4.703756 19.29777 1.12E-05 0.006177
PTPRE 0.456301 2.718066 15.96502 6.45E-05 0.017804
OR2A1-AS1 0.460911 0.345043 14.55567 0.000136078 0.027729
MISFA 0.467977 -0.147 12.54327 0.000397636 0.049474
SIM2 0.487467 2.960039 16.63429 4.53E-05 0.014249
CELF6 0.557284 -0.13149 16.17211 5.78E-05 0.016806
ABCA12 0.579788 0.062118 14.17864 0.000166247 0.032202
SEMA5A 0.582161 6.489798 17.20552 3.35E-05 0.01235
IRS2 0.591112 4.466242 14.10983 0.00017244 0.032848
LINCO1277 0.786045 -0.53122 14.16108 0.000167806 0.032351
ZFPM2 0.801454 0.340995 12.91085 0.000326684 0.045108
TWIST2 0.831999 4.611952 12.65027 0.000375512 0.048415
KCNK15 0.843858 2.00907 16.57159 4.68E-05 0.014505
LYPLAL1-AS1 0.870673 -0.54629 20.83813 5.00E-06 0.004005

CTSK 0.892649 4.827643 20.56693 5.76E-06 0.004358
RARRES1 0.89793 1.201195 33.30716 7.87E-09 4.59E-05
CELSR1 0.899855 3.295554 12.7837 0.000349652 0.04727

EPHA3 0.942838 2.566101 16.95059 3.84E-05 0.013037
LINC00906 0.952773 -1.22901 19.67965 9.16E-06 0.005941
DENND2A 0.959001 0.240724 13.41387 0.00024977 0.038963
EIF4A2P3 1.000457 -1.55854 14.77132 0.000121367 0.025479

ABCA6 1.018584 2.061196 13.22672 0.000275986 0.041179

USP6 1.140794 -0.65042 13.33082 0.000261079 0.039816

C3 1.160315 4277584 13.64326 0.000221033 0.036797

FOLR3 1.242528 -1.2425 14.01678 0.000181187 0.033347

LHX9 1.30102 1.764174 32.56135 1.15E-08 5.24E-05

ST3GAL6-AS1 1.400417 -2.06166 12.94407 0.000320936 0.044663
LINC02385 1.512722 -1.89567 18.89287 1.38E-05 0.007153
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End of the Table 4

Gene logFC logCPM LR p-value FDR
SLC15A5 1.512989 -1.98155 17.51228 2.85E-05 0.011007
CASP16P 1.513554 -2.07019 13.84536 0.000198486 0.034817

CNTNAP3B 1.785434 2.465226 16.2065 5.68E-05 0.016806
ZNF232 3.397878 -2.27352 14.85184 0.000116294 0.024756
Table 5

Performance of predictive models based on LASSO regression and RFR
for chronological age estimation

RFR LASSO
Indicators Pearson correlation Spearman correlation Pearson correlation Spearman correlation
coefficient coefficient coefficient coefficient
Number of genes
(r>]0.5]) 26 135 26 135
MAE 10.516 10.060 9.858 12.731
R? 0.684 0.742 0.755 0.655
Table 6

Performance of predictive models based on LASSO regression and RFR
for the assessment of in vitro culture duration (passage number)

RFR LASSO
Indicators Pearson correlation Spearman correlation Pearson correlation Spearman correlation
coefficient coefficient coefficient coefficient
Number of genes
(]0.5]) 26 186 26 186
MAE 0.490 0.440 0.508 0.682
R? 0.261 0.323 0.583 0.267
p<0.05
I 1
NS
120 - —_—
100 - i_l —

x©
(=]
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Telomere length per haploid
genome (kb)
S 3
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Figure 2. Comparison of the absolute telomere
length normalized to the haploid genome in
cultured MSCs

Measurements were performed using quantitative

Passage 2 Passage 5 Passage 9

Bone marrow
MSCs

Young  Elderly PCR. The telomere length was compared between the
donors  donors umbilical MSCs at different passages and between the
Umbilical cord donor bone marrow MSCs isolated from the young (20—

MSCs, passage 5 25 years, n=3) and elderly (>60 years, n=3) donors.
NS — p=0.05, Student’s t-test
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a Bone marrow MSCs b Umbilical cord MSCs

Passage 4 Passage 6
Elderly donors Without treatment 200 uM H,0,,4 h

Young donors

SA-bGal

Hoechst

100 pm

c Umbilical cord MSCs
Passage 11 Passage 15

100 pm

Figure 3. Investigation of senescence associated B-galactosidase (SA-bGal) activity in the cultivated MSCs

Cells were fixed and stained to determine SA-bGal, nuclear DNA was stained with the Hoechst dye; (a) comparison of
bone marrow MSCs from the young (18-25 years) and elderly (>65 years) donor at cultivation passage 4; (b) comparison
of umbilical cord MSCs at passage 6 under standard cultivation conditions and after a 4-hour treatment of 200 uM solution
of hydrogen peroxide; (c) comparison of umbilical cord MSCs at cultivation passages 6, 9, 11, and 15 under standard
cultivation conditions

Moreover, we did not find significant differences nuclear morphology, the reduction of H3K9me3 signal
comparing cell preparations from the donors of various intensity was noted, which agrees with heterochromatin
ages (see Figure 4 (c), (d)). However, at the level of erosion observed in aging, and enlargement of nuclei
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a .
Umbilical cord MSCs b Umbilical cord MSCs
Passage 7 Passage 9 Passage 11 Passage 15 Without treatment 200 uM H,0,, 4 h

100 pm

Hoechst

100 pm

Ki-67

H3K9me3

Bone marrow MSCs d Bone marrow MSCs Umbilical cord MSCs
Young donors Elderly donors Passages 2-3 Passage 6
Passage 2 Passage 7 Passage 2 Passage 10 p>0.05 p<0.01
ssage ssage ssage ssage o s i _—
0.8 —
2 g "¢ .
= & 04 _—
02 —
Young Elderly Without I 200 uM
- donors donors treatment H,0,, 4 h
o
M Umbilical cord MSCs
1.0
100 pm 0.8 |
o 0.6 - O Ki-67-
) A
2 & 04 - W Ki-67
&
M 0.2 —
z
0
7 9 11 15
Passage

Figure 4. Investigations of the nuclear marker Ki-67 in the MSC cultures

Formaldehyde-fixed MSC samples were stained with antibodies against the cell proliferation marker Ki-67 (a)—(c), the rate
of Ki-67-positive nuclei on the samples was then determined (d). For visualization of nuclei, chromatin was stained with
antibodies against histone modification H3K9me3, nuclear DNA was stained with Hoechst; (a) comparison of umbilical cord
MSCs at passages 7, 9, 11, and 15; (b) comparison of umbilical cord MSCs at passage 6 under standard conditions and
after 4-hour treatment of 200 uM solution of hydrogen peroxide; (c) comparison of staining the donor bone marrow MSCs at
early and late cultivation passages; (d) the rate of Ki-67-positive cells on the stained MSC samples

was observed at later passages and with increase of evidence is accumulating in favor of using changes
the donor age. Similar effects were also noted during in nuclear morphology as an independent marker of
continuous cultivation and stress-induced senescence of  cellular senescence. From the technical point of view,
the umbilical cord MSCs (see Figure 4 (a)—(c)). this analysis looks robust, since it actually requires

It is interesting to note that an increasing amount of  microscopic analysis coupled with fluorescent nuclear
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staining. Moreover, available approaches in the machine
learning image recognition accelerate processing and
collection of the required statistical data. For this reason,
to systematically analyze changes in nuclear morphology
during aging, we trained a segmentation neural network

ADVANCED RESEARCHES

model that describes nuclear morphology parameters
such as area, roundness, and ellipse parameters (see
“Materials and Methods”). The model demonstrated high
segmentation quality on the test set (Figure 5 (a)). As
the primary metric for evaluating model performance,

a b Umbilical cord MSCs
p=0.042
Initial image p=0.019 T
5-10%+ p=0.037
= 105
4] p=1.0-10
s p=4.8-10°
>
Manual annotation g 3-10°4 p=5.8-10 £
5
< 2104 |
11,387 330 | 12,443 L3100 2
<104 4 9501
0] [ R | .
Neural network result | | |
04 1 1
5 7 9 11 13 15
Passage
c . stribut
Bone marrow MSCs Umbilical cord MSCs Distribution of the cells
by classes ¢ 0.2 0.4 0.6 0.8 1
p=0.36 Passage 6
p=0.0052 3] 0.07 . 003 003 006 004 0.19
p=1.4-10"16 p=1.4-10"6
110° -8 4104 51052 039 000 000 001 004 0.04
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Figure 5. Investigation of the MSC samples using neural network algorithm for image segmentation and
classification

The image segmentation algorithm was trained based on the stained MSC samples, (a) upper image. For training the
neural network, nuclear boundaries on the samples were manually annotated, (a) middle image. The trained algorithm
successfully identified the nucleus boundaries, (a) lower image. The segmentation algorithm was subsequently used
to estimate the sizes of MSC nuclei during passaging or under stress conditions (b, ¢, d), as well as for subsequent
classification of cells into age classes (e). Figure (b) comparison of the nuclear areas in umbilical cord MSCs samples
at passages 5, 7, 9, 11, 13, and 15; (c) comparison of nuclear areas in donor bone marrow MSCs samples at early and
late cultivation passages; (d) comparison of the nuclear areas in umbilical cord MSC samples under standard cultivation
conditions and after the 4-hour treatment of 200 pM solution of hydrogen peroxide; the numbers show mean area values;
statistically significant differences were calculated using the Mann—Whitney test. Figure (e) a heat map of cell distribution
across predicted classes in MSC samples from different passages. The neural network algorithm assigned cells to three
classes: class 1 corresponded to early passages, class 2 to intermediate passages, class 3 to late passages. Cells that had
an equal probability of belonging to two classes were assigned the value 1/2, 2/3, or 3/1. Cells for which a class could not
be unambiguously determined were assigned the value “Unknown” (UNK)
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the Intersection over Union (loU) measure was used.
The loU obtained for the model, equal to 0.88, indicates
effective segmentation of cell nuclei and their boundaries
even in the presence of noise and variations in the
original images. For each nucleus, a set of parameters
was calculated:

1) the center coordinates (X, Y) allow the nucleus to
be matched with other cellular structures and used for
spatial analysis; they are defined as the centroid derived
from contour moments;

2) area — a marker of the overall size of the nucleus,
an increase in area can be associated with cells
transitioning to later passages;

3) roundness characterizes shape compactness,
an increase in the value indicates that the nucleus
is acquiring a more circular shape, which may be
associated with later stages of cellular senescence;

4) the ellipse semi-axes and orientation angle allow
assessment of the degree of elongation and the nucleus
orientation;

5) the Hausdorff distance serves as a criterion of
approximation quality, low values (<10) indicate that the
nucleus shape conforms to an ellipse.

Using the developed model, data on the size and
shape of MSCs nuclei (Figure 5 (b)—(d)) from the donors
of various ages (n=9308), subjected to varying the
duration of in vitro cultivation (n=5157), and before and
after the induction of stress-mediated cell senescence
(n=564) were collected. Cells from donors in the older
age group showed a broader range of nuclear sizes at the
early stages of culture, whereas with increasing passage
the nuclear sizes of cells from donors of different ages
converged (see Figure 5 (c)). During prolonged culture
the nuclear size also increased significantly, and this
increase occurred gradually (see Figure 5 (b)). Stress-
induced senescence was associated with the most
dramatic increase in nuclear size (see Figure 5 (d)).

At the next step, we evaluated the possibility of
predicting the duration of cell cultivation, expressed as
the ordinal number of the cultural passage, from nuclear
morphology. The developed model classified the cells
into three classes: early cultural passages (passages
3-5), intermediate (passages 7-9), and late (passages
11-15) according to the structure of the training dataset.
As a result of the model’s operation, the analyzed cells
were assigned a membership coefficient for one of
the listed classes. The algorithm for calculating class-
membership coefficients comprised several stages. At
the first stage, a cell region was generated by merging
the boundary mask with the class masks; then, based
on the segmentation results, the cell contour was
extracted and filled. The next stage involved counting
overlaps with the class masks to determine the number
of pixels that simultaneously lay within the cell region
and the mask of the corresponding class. Subsequently,
normalization by cell area was performed, whereby for
each class the ratio of overlapping pixels to the total cell
area was converted into a proportion ranging from 0 to
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100%. These proportions were then adjusted so that
their sum equaled 100%, and the corrected proportions
were taken as the membership-coefficient values for
each class. Membership to the primary classes (1, 2,
3) was defined by the highest coefficient value; a mixed
class (1/2, 2/3, 3/1) was assigned when the difference
between the coefficients of two classes did not exceed
10%; an undefined class was assigned to a cell when the
coefficients for all classes were close to each other (all
values below 40%). Evaluation of the algorithm on the
test set demonstrated adequate prediction of the actual
culture passages of the studied cells (Figure 5 (e)).
Starting from passage 9, the representation of cells in
different classes increased, which may be related to
rising morphological heterogeneity of cells associated
with aging. With increasing passage number in the test
sample, the proportion of cells classified as late-passage
cells steadily grew, most likely reflecting the dynamics of
accumulation of senescent cells.

Discussion

The key hallmark of cellular senescence is an
irreversible arrest of the cell cycle mediated by the
activation of cyclin-dependent kinase inhibitors
p16NK4a and p21CP1a [3]. In the studied models of
MSC cellular senescence, the genes encoding the
proteins p16M™K4a p21CIP1a glso displayed the expected
dynamics. Moreover, substantial changes occurred in
cell morphology and nuclear architecture. A significant
role in the alteration of nuclear and chromatin structure
is played by the senescence-associated decrease
in the expression level of LMNB1 gene [15, 34]. The
reduction of the LMNBT1 gene expression level was
observed in all examined models of cellular aging and
it was most pronounced in the replicative senescence
of MSCs. Specific changes in chromatin structure also
include the formation of the so-called senescence-
associated heterochromatin domains (SAHF and SAHD)
together with decondensation of peri/centromeric
heterochromatin regions (SADS) and global erosion
of heterochromatin [16, 35-37]. These changes are
involved in the regulation of both genes comprising
the so-called senescence-associated proinflammatory
phenotype [14, 35].

One of the factors determining the chromatin
structure is a nuclear architectural protein, HMGB2,
whose expression declines during cellular senescence
and which, in particular, is considered as an early
marker of cellular senescence [14, 38]. A decrease in
the expression of the HMGB2 gene was also detected
with the increase of chronological age of MSC donors,
in stress-induced and replicative senescence of
MSCs. In the oncogene-induced senescence model
HMGB2 has been shown to prevent propagation of
heterochromatin in the genome regions containing
genes forming the so-called senescence-associated
proinflammatory phenotype, thereby helping to
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maintain their expression [14]. Although such an
effect has not been confirmed in the replicative
senescence, however, the development of a more
permissive chromatin state during aging — caused by
disruptions of the machinery that maintains facultative
and constitutive heterochromatin, remodeling of the
nuclear spatial topology, and activation of intracellular
pro-inflammatory signaling pathways in response to
DNA damage (cGAS-STING) — are key factors that
determine the formation of the SASP [15, 37, 39].

The concept of senescence-associated secretory
phenotype unites the complex of proinflammatory
cytokines, growth factors, and metalloproteinases [40].
The main factors that constitute the SASP are TNFa,
MCP-1, MCP-2, SERPINE1/PAI-1, GM-CSF, GROq, B, v,
IGFBP-7, interleukins IL-1a, IL-6, IL-7, IL-8, chemokine
MIP1a, and matrix metaloproteinases MMP-1, MMP-10,
and MMP-3 [41]. However, it is important to note that the
composition of SASP changes significantly depending
on the cause of cellular senescence and the cell type
[18]. Interestingly, when comparing MSCs from donors of
different ages, no significant dynamics in the expression
of genes encoding individual interleukins was detected.
At the same time, during culture and under stress-
induced senescence, pro-inflammatory SASP factors
such as IL-6, CXCL8, IL-1B became activated. This
observation partially contradicts the previous reports of
increased activity of these SASP factors in MSCs from
older donors [42]. It should be emphasized, however,
that in the cited study, a convincing difference in
expression was demonstrated only for IL-6. Moreover,
our analysis of published transcriptomes of BM-MSC
samples (n=37) did not find reliable correlation between
the expression of the investigated genes encoding
individual SASP components and the age. All this
together may reflect the heterogeneity and substantial
contribution of donor-specific effects that complicate the
analysis of age-related changes of gene expression.
This is also supported by the performance of the
regression model for predicting chronological age, which
exhibited a relatively high value of the mean absolute
error (R?=0.755; MAE=9.858 years).

It should be noted that previously described predictive
models for estimating age from transcriptomic data
have demonstrated comparable effectiveness [20, 43,
44)]. More accurate similar algorithms generally achieve
maximum performance on the narrow age cohorts.
Moreover, in the process of model development, the
authors excluded multiple available samples from the
analysis, since their inclusion significantly worsened
the model quality [45]. Thus, the evaluation of gene
expression dynamics may be used to the greater extent
to analyze cellular senescence in vitro. In this case,
typically only limited number of cell lines are investigated
under relatively standard cultivation conditions, which
is likely to reduce the variability of gene expression
profiles inherent to the primary donor cell cultures and
samples. Similarly, according to the data obtained by
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us, the assessment of MSC telomere length, at least on
the small sample sets, is also rather applicable for the
evaluation of replicative senescence in vitro.

Cytological analysis techniques are widely used
to study cellular senescence. Cellular senescence is
accompanied by characteristic morphological changes
such as flattening, enlargement of the cell and nuclear
size, as well as the appearance of specific protein
markers, like activation of senescence-associated
B-galactosidase [3, 46]. In the present work, the activity of
senescence-associated [(-galactosidase demonstrated
its applicability for the qualitative assessment of both
replicative and stress-induced senescence. However,
the use of this marker for the evaluation of the functional
state of the cells requires standardization of several
conditions. First, it is necessary to control the efficiency
of the reagent lot used in the work, since the pH shift
of these reagents may essentially distort the results.
Taking into account the necessity to analyze the
freshly prepared cell slides, it is not always feasible in
serial experiments conducted in research laboratories.
Besides, cell preparations must demonstrate similar
cell density, since the elevated confluence can lead to
distorted results [47]. Interpretation of the obtained
results at the early stages of the cellular senescence
may be difficult due to the absence of a fixed threshold
value of the B-galactosidase activity, making it difficult
to classify cells as positive or negative for this marker.
Altogether, this limits the application of this marker
for studying cell preparations obtained from donors of
various ages.

As an alternative, approaches to assessing cellular
aging based on the analysis of several protein markers
associated with proliferation, apoptosis, and DNA
damage may be considered [17]. At the same time, the
applicability of these approaches is again limited by the
selection of optimal markers. For example, expression
of the protein Ki-67 widely used as a proliferation
marker depends on the stage of the cell cycle, while
the variant of yH2Ax histone, the marker of the DNA
damage, is detected at the late stages of cellular
senescence [17, 48].

With the development of the machine learning
methods, there was proposed a concept, according to
which the processive analysis of cell morphology may
serve as an integral metric of cell aging [21, 49, 50].
To estimate the applicability to this approach, we have
developed a segmentation neural network model for
the automated assessment of the nuclear morphology
parameters. The analysis of BM-MSCs from the donors
of various ages at the early passages has shown that
the range of nucleus sizes was wider in the cell sample
of the donors from the older age group. The nucleus
size gradually increased during MSC cultivation and
the size of the BM-MSC nuclei from the donors of
various ages did not demonstrate significant differences
between the age groups. The most prominent change
of the nuclear morphology was observed in stress-
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induced cell senescence. The developed model also
allows for effective classification of the individual cell
passage as a surrogate metric of the cell aging stage for
umbilical cord MSC samples. In this connection, it may
be supposed to be also employed for the estimation of
the functional state of the donor BM-MSC samples if
there is a sufficient amount of datasets for the training
sample. Besides, the application of similar models
to assess the effects directed to the reduction of cell
senescence manifestations, such as rejuvenation by
partial reprogramming is of great interest [51, 52].

Conclusion

In the presented work, some aspects of phenotypic
manifestations of various types of MSC senescence have
been studied. At the level of individual gene expression, it
has been shown that the change in the expression levels
of CDKN1A, LMNB1, HMGB2, and SERPINE1/PAI1 is
observed in all investigated models of cellular senescence.
At the same time, the analysis of transcriptomic data has
demonstrated significant donor-dependent heterogeneity
of gene expression profiles, which hampers creation
of effective predictive models for the evaluation of
chronological age and the duration of the in vitro
cultivation. At the same time, an alternative predictive
metric of cellular aging — at least in the case of replicative
aging — can be changes in nuclear morphology, whose
dynamic analysis using neural-network models allows us
to estimate the duration of in vitro cultivation. Combining
such approaches with other promising metrics, such as
epigenetic clock algorithms, gives hope for developing
functional algorithms to evaluate the phenomenon of
cellular senescence.
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