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The aim of the study is to analyze the manifestation of selected cellular senescence markers on the models of replicative senescence, 
stress-induced senescence, and chronological aging of human mesenchymal stem cells and to study the feasibility of predictive models for 
assessing the age and duration in vitro cultivation based on the transcriptomic data and investigation of cell morphology.

Materials and Methods. In the study, the dynamics of expression of individual genes encoding key regulators of cellular aging 
across various models of cellular senescence, as well as telomere length were investigated by real-time PCR. The analysis of the high-
throughput transcriptome sequencing datasets of mesenchymal stem cells from the donors of different ages has been performed. Using 
regression methods, predictive models based on transcriptomic data were developed to estimate chronological age and the duration of 
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in vitro cultivation. Using microscopy methods and subsequent image analysis by machine-learning algorithms, morphological alterations 
associated with cellular senescence have been explored and segmentation neural network model has been created for extracting nuclear 
morphology parameters and classification of the cells based on the duration of cultivation in vitro.

Results. CDKN1A, LMNB1, HMGB2 genes demonstrated reproducible similar dynamics on the models of replicative or stress-induced 
senescence and chronological aging of mesenchymal stem cells. The expression profile of the senescence-associated inflammatory 
phenotype components was variable in different models of cell aging. The analysis of mesenchymal stem cell transcriptomes from the 
donors of various ages revealed considerable donor-dependent heterogeneity of the cells, which complicates the development of precise 
transcriptome data-based predictive models. Investigation of the changes in the telomere length has demonstrated its applicability for 
assessing the dynamics of replicative senescence in vitro. The developed segmentation neural network model allowed for detecting 
senescence-associated dynamics of nuclear morphology alterations in the process of replicative aging.
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Introduction

Preparations of allogenic and autologous mesen
chymal stem cells (MSCs) are considered as a 
promising component of regenerative cell therapy [1]. In 
clinical trials, high doses reaching hundreds of millions 
of cells per one procedure are used. It often requires 
the expansion of the culture in vitro, which, together 
with the compromised functional state of the donor’s 
organism, may reduce the quality of cell preparations 
[2–4]. Functional methods of MSC preparation for 
clinical application imply the assessment of morphology, 
cell survival, differentiation potential, and biological 
safety [5, 6]. At the same time, additional investigations 
are needed to study the effect of functional state of the 
donor’s organism, cultivation conditions, and duration 
on the quality of cellular products. When classifying 
the markers of aging, various functional manifestations 
such as metabolic and immune disorders, genome 
instability, and epigenome alterations are distinguished 
[7]. One of the hallmarks of aging is the accumulation 
of the senescent cells unable to proliferate, resistant 
to apoptosis, and possessing the characteristic 
morphological and metabolic phenotype [3, 7].

Inducers of cellular senescence may include the 
exhaustion of proliferative potential, accompanied 
by critical telomere shortening; exposure to toxic, 
genotoxic, and oxidative stress; induction of oncogenes; 
inflammation; mitochondrial dysfunction; disruption of 
epigenetic regulatory mechanisms, and other factors [3, 
8–11]. It is important to note that the listed factors may 
also be the secondary effects of cellular aging, and its 
phenotypic manifestations at the cellular level can vary 
in a wide range.

Due to its heterogeneity both in vitro and in vivo, 
there is no specific universal marker of cell senescence 
[12, 13]. Therefore, the investigation of cellular aging 
dynamics in general relies on the analysis of several 
markers, whose combination is inherent to this 
process [3, 12]. These markers include the induction 

of senescence-associated β-galactosidase, activation 
of the cell cycle inhibitors p16INK4A, p21CIP1; reduced 
expression of LMNB1 and HMGB2 proteins, which 
shape the structure and architecture of the cell nucleus 
[14–16]. In addition to the analysis of the mentioned 
markers, functional tests can be performed to assess 
proliferative potential, presence of the DNA damage or 
apoptosis markers [12, 17].

The characteristic feature of the senescent cells is 
secretion of proinflammatory cytokines, chemokines, 
growth factors, and proteases, which compose 
specific senescence-associated secretory phenotype 
(SASP) [18]. The detection of SASP factors serve as 
an indicator of cell aging, however, their abundance 
varies significantly and depends, in particular, on 
functional cause of the cell senescence [11]. Thus, a 
classic approach to the exploration of cell senescence 
is based on the analysis of sufficiently wide spectrum 
of non-exclusive (non-specific) markers and conducting 
functional tests. At the same time, the perspective 
integral assessment of cell senescence by predictive 
models built on the analysis of DNA methylation patterns, 
transcriptomic data, and cell morphology is presently 
being developed [19–21]. These predictive models may 
consider variability of cell aging phenotype and usually 
depend, to the lesser extent, on separate markers, which 
makes them a promising analytical tool.

The aim of the study is to analyze manifestations 
of selected markers of senescence on the models of 
replicative senescence, stress-induced senescence, 
and chronological aging of human mesenchymal 
stem cells. Among the markers we assessed were 
the level of expression of individual genes whose 
expression dynamics are associated with aging, global 
transcriptome alteration during chronological and in 
vitro cellular aging; telomere length measurement 
and changes in cell morphology and manifestations 
of specific cytological markers of cellular aging. In this 
study, we evaluated the applicability of these markers for 
assessment of MSC aging as well as the limitations of 
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methods used that could potentially bias the analysis. In 
addition, we have analyzed the conceptual feasibility of 
building predictive models for estimating chronological 
age and duration of in vitro cultivation based on the 
transcriptomic data and cell morphology analysis.

Materials and Methods

Cell cultures. Cell samples were obtained from 
the donors with prior written informed consent. The 
study was approved by the local ethics committee 
of the Federal Center of Brain Research and 
Neurotechnologies of the Federal Medico-Biological 
Agency of Russia (Protocol No.7-5-22 of September 6, 
2022).

In the study, MSCs (n=2) isolated from the Wharton’s 
jelly of the healthy pregnant woman (38–40 weeks of 
gestation); bone marrow derived MSCs (BM-MSCs) 
from healthy donors aged 18–25 years (n=3) and 
donors older than 65 years (n=3) obtained from the 
mononuclear cell fraction of bone marrow, which was 
isolated by gradient centrifugation (20 min, 400 g) in 
the ficoll solution (PanEco, Russia). The cells were 
cultivated in the DMEM/F12 medium (Servicebio, China) 
supplemented with 15% fetal bovine serum (Capricorn, 
Germany) and the antibiotic cocktail of penicillin 
(100  units/ml) and streptomycin (100 µg/ml) (Gibco, 
USA). Subculturing was performed at split ratio of 1:4. 
Using flow cytometry, the expression of the following 
MSC markers was analyzed: CD29, CD44, CD73, 
CD90, CD105, CD34, CD45 (FITC/PE; Miltenyi Biotec, 
Germany), and HLA-DR. The cells exhibited morphology 
and immunophenotype characteristic of MSCs: CD29+, 
CD44+, CD73+, CD90+, CD105+, CD34–, CD45–.

For induction of the stress-induced cellular 
senescence, MSCs were cultured until they reached 
60% of confluence, after which the culture medium was 
replaced with medium containing 200 µM hydrogen 
peroxide (Dia-m, Russia). After 4 h of incubation, the 
medium was removed, and MSCs were washed twice 
with the phosphate-saline buffer. Then the cells were 
incubated under the standard cultivation conditions for 
3 days, after which they were used for further analysis.

Immunostaining and cytochemical analysis 
of senescence-associated β-galactosidase. Cells 
were cultured in 96-well plates for confocal microscopy 
(SPL Lifesciences, South Korea) or on cover glasses 
precoated with 0.1% gelatin solution (Sigma-Aldrich, 
USA). Upon reaching the required confluency, the 
samples were fixed in 4% formaldehyde solution 
(Sigma-Aldrich, USA). The activity of senescence-
associated β-galactosidase was analyzed using the 
previously described method [22]. For immunostaining, 
the cells were incubated in the 0.1% Triton X-100 
solution (Amresco, USA) for 30 min, after which they 
were incubated in 1% BSA solution (Sigma-Aldrich, 
USA) for 1 h. The following primary and secondary 
antibodies were used for immunostaining: Ki-67 (Cell 

Signalling Technology, USA or Milteny Biotec, Germany); 
H3K9me3 (Active Motif, USA); Donkey Anti-Mouse IgG 
H&L (Alexa Fluor® 488) (Abcam, Great Britain); Goat 
Anti-Rabbit IgG H&L (Alexa Fluor® 568) (Abcam, Great 
Britain); Goat anti-Rabbit IgG (H+L) (PE-Alexa Fluor™ 
647) (Invitrogen, USA). Hoechst 33342 (Invitrogen, 
USA) was used for nuclear staining. The samples 
were analyzed using the Olympus BX 51 fluorescence 
microscope (Olympus Corporation, Japan) and Nikon A1 
scanning laser confocal microscope (Nikon Corporation, 
Japan).

Gene expression analysis using real-time PCR. 
The Rizol reagent (diaGene, Russia) was used for 
RNA isolation following the manufacturer’s protocol. 
The complementary DNA was synthesized with reverse 
transcription reagent kit (Biolabmix, Russia). The real-
time PCR was performed using BioMaster UDG HS-
qPCR SYBR Blue premixes (Biolabmix, Russia). The 
ACTB and SDHA were used as reference genes for 
normalization.

Below are the sequences of oligonucleotides used in 
our work:

ACTB_F  ACAGAGCCTCGCCTTTG,   ACTB_
RCCTTGCACATGCCGGAG;

S D H A _ F   T T T G AT G C A G T G G T G G TA G G , 
SDHA_R  CAGAGCAGCATTGATTCCTC;

p21_F  TGGAGACTC  TCAGGGTCGAAA,  p21_R 
GGCGTTTGGAGTG  GTAGAAATC; 

HMGB2_F CTTGGCACGATATGCAGCAA, HMGB2_R 
CAGCCAAAGATAAACAACCATATGA;

LMNB1_F  ACACTTCTGAACAGGATCAACC, 
LMNB1_R  CTGTGACACCAGCGTTTGC;

p16 ink4a_F   CCCAACGCACCGAATAGTTA, 
p16ink4a_R  ACCAGCGTGTCCAGGAAG; 

IL6_F  GTGGCTGCAGGACATGACAA,  IL6_R  TGA
GGTGCCCATGCTACATTT; 

I L 8 _ F   A A G A G C C A G G A A G A A A C C A C C , 
IL8_R  CTGCAGAAATCAGGAAGGCTG;

IL1b_F  CTGTCCTGCGTGTTGAAAGA,  IL1b_R 
TTGGGTAATTTTTGGGATCTACA;

PAI1-F  CTCATCAGCCACTGGAAAGGCA,  PAI1-R 
GACTCGTGAAGTCAGCCTGAAAC; 

MCP1_F  CTTCTGTGCCTGCTGCTCATA,  MCP1_R 
CTTTGGGACACTTGCTGCTG;

MMP1-F  TGGACGTTCCCAAAATCCTG,  MMP1-R 
AAGGGATTTGTGCGCATGTAG;

 MMP3-F CTGCTGTTGAGAAAGCTCTG, MMP3-R 
AATTGGTCCCTGTTGTATCCT.

Measurement of the telomere length using 
real-time PCR. The real-time PCR was performed 
with BioMaster UDG HS-qPCR SYBR Blue premixes 
(Biolabmix, Russia) using primer pairs Tel-F CGGTTTGT
TTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT and Tel-
RGGCTTGCCTTACCCTTACCCTTACCCTTACCCTTA
CCCT specific to telomeric DNA repetitive sequence as 
well as 36B4u CAGCAAGTGGGAAGGTGTAATCC and 
36B4d CCCATTCTATCATCAACGGGTACAA specific 
to the region of acidic ribosomal phosphoprotein P0 
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gene on chromosome 12. Genome copy numbers and 
the total length of the telomeric DNA were determined 
relative to the DNA strand, represented by the plasmid 
pAL2-T (Eurogene, Russia) bearing 36B4 genomic 
region or human telomeric DNA fragment encompassing 
14 repetitive units with the total length of 84 bp. The 
following parameters of amplification were used: 50ºС 
for 5 min, 95ºС for 10 min, 39 cycles of 95ºС for 15 s and 
60ºС for 1 min.

Analysis of the next-generation transcriptomic 
sequencing data and building predictive models 
based on the transcriptome data. The datasets 
deposited in the Gene Expression Omnibus repository 
(GSE139073, GSE145008) were used in our work [23, 
24]. Short-read alignment to the reference GRCh38 
genome, preprocessing, and detection of gene 
expression were performed using STAR, SAMtools, 
and featureCounts programs [25–27]. To eliminate 
batch effects in the transcriptome data, the ComBat-seq 
method implemented in the sva package was applied 
[28]. The statistical edgeR package was employed to 
analyze the differential gene expression [29].

The predictive models of chronological age and in 
vitro cultivation duration were created based on the 
normalized values of gene expression. Genes, whose 
expression level correlated significantly with the passage 
or chronological age of the donors, were selected using 
Spearman and Pearson coefficients of correlation 
(coefficient >|0.5|, p-value-adjusted <0.05). The 
regressive models were built using LASSO regression 
and random forest regressor (RFR) from the Scikit-learn 
package [30]. Data were divided into two sets: the training 
set (80%, 84 sequencing samples) and the test set (20%, 
22 sequencing samples). For the LASSO regression-
based model, automatic tuning of the hyperparameter 
was applied with LassoCV on the training set. For the 
RFR model, the base number of tree parameters was 
used. The model quality was evaluated on the test set 
which was not involved in the learning process. 

Data preparation and training of the neural 
network segmentation model. In the first stage, using 
the segment anything image-recognition model followed 
by manual validation and correction, nuclear masks were 
generated for microscopic images of cell preparations of 
umbilical MSCs at different culture passages (passage 
range — 3–15, a total of 27,500 cells) [31]. At the next 
stage, images were scaled to the equal resolution 
and divided by a sliding window with a 246-pixel pitch 
into the overlapping fragments 256×256 in size. The 
window step provided an overlap of neighboring image 
fragments by 10 pixels on each side, which reduced 
boundary artifacts during the subsequent assembly of 
the final segmentation map. To increase the model’s 
robustness to various exposure and contrast variations 
of the images, augmentation methods were employed. 
Among the transformations used were horizontal and 
vertical flips, random adjustments of brightness and 
contrast, as well as scaling with small shifts. The final 

dataset comprised 563 examples and was split in an 80 
to 20% ratio for training and testing, providing a sufficient 
number of samples for proper tuning of the network 
parameters.

For solving the cell nucleus segmentation task, a 
convolutional neural network architecture, DeepLabV3+ 
[32] was used. As the backbone network, EfficientNet-b0 
[33] pretrained on the ImageNet dataset was selected, 
providing the models with an initial representation of 
low-level image features. Training was performed for 40 
epochs, allowing the model to reach stable convergence. 
During this period, the model was trained on a compute 
node equipped with an NVIDIA A100 GPU, completing 
the full training cycle in 3.5 h. To minimize the impact 
of class imbalance (significant differences in nucleus 
sizes and thin boundaries) and achieve more accurate 
segmentation, a combined loss function was used, 
which integrated two components: the BCE-Dice Loss 
provided high sensitivity to the imbalance between 
classes (nucleus/background) and accounted for spatial 
consistency of predictions; the focal loss improved 
training by reducing the influence of easily classified 
examples. During training, a learning-rate scheduler 
was employed, adjusting the learning rate from an 
initial value of 1e–3 down to 1e–5 after each iteration, 
ensuring a gradual reduction of the optimization step 
and promoting stable convergence of the model.

For calculating quantitative morphometric charac
teristics of nuclei, a binary mask obtained from the 
DeepLabV3+ segmentation results was passed to 
the  analysis function. Before the calculations, pixels 
marked as “border” were excluded from the overall 
mask, after which sequential erosion and dilation (by 
20 pixels) were performed to remove thin artifacts and 
merge broken contours. The parameters computed 
for each nucleus: center coordinates (X, Y), area, 
roundness, semi-major/semi-minor axes of the ellipse 
and inclination angle,  the Hausdorff distance. The 
coefficient of belonging to the class was also established: 
class 1 (passages 3–5), class 2 (passages 7–9), class 3 
(passages 11–15). The executable scripts of the model 
are deposited in the GitHub repository (https://github.
com/LabADTCellSeg/cellseg).

Results

Senescence-associated changes in gene 
expression profile. To assess the senescence-
associated gene expression dynamics in MSCs we 
selected genes that might be considered as principle 
regulators of the cell cycle and nucleus structure, as well 
as genes encoding components of the proinflammatory 
phenotype. We examined the expression levels of the 
following genes — P16INK4a/СDKN2A, P21CIP1/
CDKN1A, LMNB1, HMGB2, IL6, IL8/CXCL8, IL1B, 
SERPINE1/PAI1 ,   MCP1 /CCL2 ,   MMP1 ,   MMP3 . 
Expression analysis was performed on a replicative 
senescence model: independent umbilical cord MSCs 
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subjected to long-term culture (n=2); on a chronological 
aging model: BM-MSCs from the donors of different 
ages: 20–25 years (n=2) and older than 65 years (n=2); 
on the model of stress-induced cellular senescence: 
umbilical cord MSCs exposed to hydrogen peroxide to 
induce cellular senescence (n=2).

The genes encoding cyclin-dependent kinase 
inhibitors (СDKN2A and CDKN1A) displayed a 
similar dynamics across all examined samples. Their 
expression increased during prolonged culture, in 
response to oxidative stress and with increasing donor 
age (Figure 1). Notably, the increase of expression was 
more pronounced for CDKN1A, whereas changes of 
CDKN2A expression were weaker and, in the context of 
the replicative aging, insignificant. The expression level 
of the genes encoding the nuclear architectural proteins 
LMNB1 and HMGB2 consistently decreased both in 
replicative and stress-induced senescence models as 
well as during chronological MSC aging (see Figure 1).

The most dramatic changes were observed 
during replicative senescence, where the decline in 
expression over the culture period reached about 
90% for both LMNB1 and HMGB2. It is noteworthy 
that genes encoding the SASP components exhibited 
different dynamics depending on the cause of cellular 
senescence (see Figure 1). For example, peroxide-
induced senescence led to an increase in the expression 
levels of all studied genes except MCP1, whereas 
replicative senescence did not activate the genes 
encoding matrix metalloproteinases MMP1 and MMP3. 
It is also worth noting that analysis of the BM-MSCs from 
the donors of different ages did not reveal age-related 
changes at the expression levels of the cytokine genes 
IL-6, IL-1β, CXCL8 was weakly activated in the cells of 
the elderly donors. The SERPINE1/PAI1 gene, encoding 
PAI-1 protein, appeared to be most stable in the context 
of aging-associated dynamics of gene expression.

Various manifestations of senescence-associated 
proinflammatory phenotype depending on the type 
of cellular senescence are generally expected. 
Nevertheless, to independently verify the obtained 
results, we searched for the publicly available high-
throughput transcriptome sequencing datasets of 
cultured MSCs that include donor age and cell passage 
information in the Gene Expression Omnibus repository. 
As a result, a dataset (n=37, age 3–85 years, median 
value 47 years; Table 1) has been prepared and 
correlation analysis of expression changes in the tested 
genes with prolonged cultivation and donor age has 
been performed. According to the obtained results, 
SERPINE1/PAI1, CDKN1A, and CDKN2A genes 
demonstrated a positive correlation with culture duration, 
whereas LMNB1 and HMGB2 showed a negative 
correlation (Spearman correlation, p<0.05; Table 2). The 
correlation with the donor age was detected for CDKN1A 
and LMNB1 genes when no correction for multiple 
testing was applied (Table 3). Differential expression 
analysis in BM-MSC samples from donors aged 20–

35 years (n=7) and donors aged 60–85 years (n=13) 
has identified only 50 differentially expressed genes 
(|logFC|>2, p<0.05) (Table 4). It is highly probable that 
donor-dependent variability of gene expression patterns 
in MSCs can be quite substantial, making it difficult to 
identify transcriptional markers of chronological aging. 
Nevertheless, the expression of individual genes might 
be applicable for assessing cellular senescence in vitro.

To conceptually validate the applicability of 
transcriptomic data analysis for predicting donors’ 
chronological age or the duration of cell cultivation, we 
prepared corresponding predictive regression models 
based on two approaches: LASSO regression and 
RFR. Genes were selected as predictors based on 
Pearson and Spearman correlation coefficients, in order 
to account for both linear and monotonic relationships 
between features and the target variables  — 
chronological age and cultivation duration. As a result, 
the models based on LASSO regression and RFR have 
demonstrated close performance: R2=0.755; MAE=9.858 
years, and R2=0.742, MAE=10.060 years, respectively 
(Table 5). The LASSO regression-based model has 
demonstrated the highest accuracy of the cell passage 
prediction on the test sample: R2=0.583; MAE=0.508 
passages (Table 6).

Analysis of telomere length for cell senescence 
assessment. One of the traditional markers of 
assessing cellular aging is the analysis of telomere 
length. For this analysis we used the real-time PCR 
method. Samples of umbilical cord MSCs of different 
passages and BM-MSC samples from the donors aged 
20–25 years (n=2) and older than 65 years (n=2) were 
analyzed on the sixth cultural passage. This method 
allowed to detect dynamics of the telomere shortening 
during MSCs cultivation. Statistically significant 
differences were observed after seven passages 
(Figure 2). At the same time, when samples from the 
donors of various ages were compared, no reliable 
differences were found.

Analysis of nuclear morphology as a marker 
of cell senescence. To evaluate the dynamics of the 
nuclear morphology and the expression of individual 
protein markers during the cell aging, we have analyzed 
BM-MSC samples of three donors from the young 
(18–25 years) and older age groups (over 65  years); 
umbilical cord MSCs exposed to continuous cultivation; 
and MSCs treated with hydrogen peroxide to induce 
senescence. In the cytochemical study of senescence-
associated β-galactosidase activity (Figure  3), an 
increase in its activity was observed during replicative 
and stress-induced senescence (Figure  3, (b), (c)). 
When comparing MSCs obtained from the donors of 
different ages, the differences were not pronounced 
(Figure 3 (a)). 

Immunostaining analysis of the proliferation marker 
Ki-67 (Figure 4 (а)–(c)) allowed us to detect a relative 
decrease of the number of Ki-67-positive cells 
associated with cultivation duration (Figure 4 (a), (d)). 
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Figure 1. Relative normalized gene expression measured by RT-qPCR in the MSC 
cultures:
(a) comparison of gene expression in the cultures of MSCs (passage 6) derived from young 
donors (18–25 years, n=3) and elderly donors (>65 years, n=3); (b) comparison between the 
umbilical MSCs (passage 7) cultured under standard conditions and after 4-hour treatment 
of 200 µM solution of hydrogen peroxide; (c) gene expression dynamics during cultivation of 
umbilical MSCs under standard conditions, measurements taken at passages 6, 11, 14, and 18 
are presented; * p<0.05; ** p<0.005; *** p<0.0005; NS — p≥0.05, Student’s t-test
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T a b l e  1
The list of the RNA-seq datasets used in the study

Sample identifier Donor age Gender Passage Donor identification 
number

Project identifier — GSE139073
SRR10307337 73 F 4 777
SRR10307338 73 F 4 777
SRR10307339 48 F 4 819
SRR10307340 48 F 4 819
SRR10307341 75 F 4 821
SRR10307342 75 F 4 821
SRR10307343 24 M 3 126
SRR10307344 24 M 3 126
SRR10307345 16 F 3 127
SRR10307346 16 F 3 127
SRR10307347 61 M 3 237
SRR10307348 61 M 3 237
SRR10307349 25 F 3 264
SRR10307350 25 F 3 264
SRR10307351 63 M 3 265
SRR10307352 63 M 3 265
SRR10307353 48 F 3 276
SRR10307354 48 F 3 276
SRR10307355 82 F 3 278
SRR10307356 82 F 3 278
SRR10307357 35 F 3 285
SRR10307358 35 F 3 285
SRR10307359 45 F 3 289
SRR10307360 45 F 3 289
SRR10307361 48 M 3 293
SRR10307362 48 M 3 293
SRR10307363 47 F 3 308
SRR10307364 47 F 3 308
SRR10307365 71 F 3 316
SRR10307366 71 F 3 316
SRR10307367 51 M 3 324
SRR10307368 51 M 3 324
SRR10307369 57 M 3 329
SRR10307370 57 M 3 329
SRR10307371 80 M 3 336
SRR10307372 80 M 3 336
SRR10307373 85 M 3 354
SRR10307374 85 M 3 354
SRR10307375 37 M 3 357
SRR10307376 37 M 3 357
SRR10307377 68 M 3 374
SRR10307378 68 M 3 374
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Continuation of the Table 1

Sample identifier Donor age Gender Passage Donor identification 
number

SRR10307379 78 M 3 378
SRR10307380 78 M 3 378
SRR10307381 68 F 3 386
SRR10307382 68 F 3 386
SRR10307383 65 F 3 660
SRR10307384 65 F 3 660
SRR10307385 69 F 3 651
SRR10307386 69 F 3 651
SRR10307387 73 F 3 777
SRR10307388 73 F 3 777
SRR10307389 33 M 3 784
SRR10307390 33 M 3 784
SRR10307391 24 M 6 126
SRR10307392 24 M 6 126
SRR10307393 16 F 6 127
SRR10307394 16 F 6 127
SRR10307395 35 F 6 285
SRR10307396 35 F 6 285
SRR10307397 48 M 6 293
SRR10307398 48 M 6 293
SRR10307399 51 M 6 324
SRR10307400 51 M 6 324
SRR10307401 33 M 6 784
SRR10307402 33 M 6 784

Project identifier — GSE145008
SRR11050732 14 F 3 1
SRR11050733 14 F 3 1
SRR11050734 14 F 3 1
SRR11050735 14 F 3 1
SRR11050736 20 M 3 2
SRR11050737 20 M 3 2
SRR11050738 20 M 3 2
SRR11050739 20 M 3 2
SRR11050740 9 F 3 3
SRR11050741 9 F 3 3
SRR11050742 9 F 3 3
SRR11050743 9 F 3 3
SRR11050744 5 M 3 4
SRR11050745 5 M 3 4
SRR11050746 9 F 3 5
SRR11050747 9 F 3 5
SRR11050748 9 F 3 5
SRR11050749 9 F 3 5
SRR11050750 13 F 3 6
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End of the Table 1

Sample identifier Donor age Gender Passage Donor identification 
number

SRR11050751 13 F 3 6
SRR11050752 13 F 3 6
SRR11050753 13 F 3 6
SRR11050754 29 M 3 7
SRR11050755 29 M 3 7
SRR11050756 29 M 3 7
SRR11050757 29 M 3 7
SRR11050758 17 M 3 8
SRR11050759 17 M 3 8
SRR11050760 33 F 3 9
SRR11050761 33 F 3 9
SRR11050762 33 F 3 9
SRR11050763 33 F 3 9
SRR11050764 13 F 3 10
SRR11050765 13 F 3 10
SRR11050766 13 F 3 10
SRR11050767 13 F 3 10
SRR11050768 3 F 3 11
SRR11050769 3 F 3 11
SRR11050770 3 F 3 11
SRR11050771 3 F 3 11

T a b l e  2
Correlation of expression of gene markers of cell senescence with the duration 
of bone marrow MSC cultivation according to transcriptomic data

Gene Spearman correlation 
coefficient p-value p-value corrected  

by the Benjamini–Hochberg method
SERPINE1/PAI1 0.45 1.04E–06 0.000053

HMGB2 –0.33 0.00049 0.0052
LMNB1 –0.31 0.0013 0.011

CDKN1A 0.31 0.0015 0.012
CDKN2A 0.30 0.0017 0.014
CXCL8 0.25 0.011 0.054
CCL2 0.22 0.023 0.090

IL6 0.22 0.024 0.091
IL1B 0.12 0.22 0.44

MMP3 –0.10 0.29 0.53

T a b l e  3
Correlation of expression of gene markers of cell senescence with the age  
of bone marrow MSCs donors according to transcriptomic data

Gene Spearman correlation 
coefficient p-value p-value corrected  

by the Benjamini–Hochberg method
CDKN1A 0.21 0.027 0.14

Measurable Metrics of Mesenchymal Stem Cell Aging
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T a b l e  4
Differentially expressed genes in bone marrow MSC RNA-seq samples  
from donors aged 20–35 years and donors aged 60–85 years 

Gene logFC logCPM LR p-value FDR
IDO1 –6.74201 0.130015 17.82139 2.43E–05 0.010439
IGKC –6.03135 1.491429 33.98931 5.54E–09 4.51E–05
CSF3 –6.00031 –0.9205 13.5434 0.00023311 0.038058

CXCL9 –5.91117 –0.96128 13.78282 0.000205204 0.035238
IGHG1 –5.75566 –0.59634 36.87759 1.26E–09 2.66E–05
IGLC2 –5.718 –1.29152 36.70287 1.38E–09 2.66E–05

EEF1DP5 –5.41503 –0.55565 13.93917 0.000188822 0.034148
IGHA1 –5.19498 –1.61628 29.47482 5.66E–08 0.000181

IGKV4-1 –4.98465 –1.7487 30.30424 3.69E–08 0.000151
MYOD1 –4.95005 –1.06079 20.98677 4.62E–06 0.004005

MUC5AC –4.60036 –1.35788 14.91265 0.000112605 0.02448
IGHG3 –4.53654 –1.75797 22.59954 2.00E–06 0.002714
IGLC3 –4.45419 –1.9868 20.78149 5.15E–06 0.004046
IGHG2 –4.45175 –1.99772 21.74035 3.12E–06 0.003496
GBX2 –4.38756 –1.50842 27.1453 1.89E–07 0.000514

IGLV3-19 –4.23956 –2.06218 20.88334 4.88E–06 0.004005
IGLV3-21 –4.16984 –2.11667 21.59141 3.37E–06 0.003535
IGLV2-14 –3.91505 –2.21161 19.31244 1.11E–05 0.006177

IGHM –3.60855 –1.94161 13.95801 0.000186939 0.033957
MYOG –3.60479 –1.94571 13.91752 0.000191009 0.034342
LAIR1 –3.57773 –2.32914 24.23182 8.54E–07 0.001396

TMEM176B –3.57146 –0.45584 22.1179 2.56E–06 0.003122
ALKAL1 –3.54348 –2.1191 18.05065 2.15E–05 0.00947
IGLV2-11 –3.49343 –2.32861 16.19594 5.71E–05 0.016806
IGKV3-20 –3.40265 –2.3715 15.44576 8.49E–05 0.021421

GCGR –3.23964 –2.16184 17.18263 3.40E–05 0.01235
IGKV3-15 –3.19646 –2.42303 17.2754 3.23E–05 0.012124

ABO –3.19078 –1.62966 25.39491 4.67E–07 0.000909
SHD –3.17845 –1.93949 13.36813 0.000255936 0.039473

Gene Spearman correlation 
coefficient p-value p-value corrected  

by the Benjamini–Hochberg method
LMNB1 –0.21 0.032 0.16
HMGB2 –0.19 0.050 0.21
MMP3 0.17 0.078 0.27
CXCL8 0.17 0.086 0.28

SERPINE1/PAI1 0.11 0.27 0.53
CCL2 0.10 0.29 0.54

IL6 0.045 0.65 0.82
IL1B –0.024 0.80 0.91

CDKN2A –0.014 0.89 0.95

End of the Table 3
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Gene logFC logCPM LR p-value FDR
TNMD –3.12462 –1.51833 26.04848 3.33E–07 0.000846

MTND1P23 –3.10661 –0.32258 14.56727 0.000135243 0.027729
IGLV2-23 –2.973 –2.26645 12.53699 0.000398975 0.049474
CLDN5 –2.81786 –2.22574 12.53175 0.000400096 0.049474

IGLV6-57 –2.75739 –2.51936 15.10868 0.000101495 0.023174
KRTAP7-1 –2.70262 –2.40336 15.37327 8.82E–05 0.021723

ZFP42 –2.62331 –2.1215 13.22307 0.000276524 0.041179
SCN5A –2.5801 –1.27536 33.64228 6.62E–09 4.51E–05
NPPB –2.43186 –1.75835 15.13791 9.99E–05 0.022947

LINC01012 –2.32618 –2.10984 25.94058 3.52E–07 0.000846
KLHL34 –2.29995 –2.32066 13.33429 0.000260597 0.039816

CYP19A1 –2.27558 –2.59913 14.27137 0.000158254 0.031096
CACNA1S –2.24875 –2.60108 13.49961 0.000238613 0.038058
FAM181B –2.20795 –1.61487 21.35758 3.81E–06 0.003709
TREML3P –2.20459 –1.64722 18.8168 1.44E–05 0.007261
SLC51B –2.08324 –2.08956 20.25594 6.77E–06 0.004944
TRIM72 –2.07456 –2.22947 14.87855 0.000114659 0.024664
HOXC12 –2.02755 0.297099 25.10952 5.42E–07 0.000963
GPX1P2 –2.02304 –2.63327 12.67682 0.000370216 0.048132

LINC03004 –2.00501 –1.67803 13.22407 0.000276377 0.041179
CRTAC1 –1.98816 –1.90343 24.45347 7.61E–07 0.001296
GPR83 –1.95678 –2.02969 19.58557 9.62E–06 0.006084
NKX2-2 –1.95335 –1.98009 15.052 0.000104589 0.023548
PDE1B –1.93211 –2.01438 13.0485 0.000303527 0.04321

HEY2-AS1 –1.89023 –2.0207 12.65258 0.000375047 0.048415
NOTCH4 –1.88533 –2.50867 12.50129 0.00040667 0.049615
MYH14 –1.88023 0.589392 15.27985 9.27E–05 0.022663
ZNF728 –1.87424 –2.18341 14.43592 0.00014501 0.02877
ZNF99 –1.8592 –2.06605 19.20551 1.17E–05 0.00634
WNK2 –1.80691 –2.04595 16.79481 4.16E–05 0.013727
RSAD2 –1.79102 –1.69653 12.85613 0.000336376 0.046134

DUSP15 –1.73147 –0.94925 22.6271 1.97E–06 0.002714
SUNO1 –1.73101 –1.89769 16.7206 4.33E–05 0.013937
GIPC3 –1.70111 –1.47442 35.46025 2.60E–09 2.66E–05
XIRP1 –1.70079 –0.95231 22.31142 2.32E–06 0.002961

LINC02182 –1.70015 –1.38832 32.94003 9.50E–09 4.86E–05
PCSK1N –1.69436 –0.279 35.46079 2.60E–09 2.66E–05

RBM12B-DT –1.68636 –2.31889 13.81687 0.000201519 0.035154
APCDD1 –1.6716 –0.15046 22.09332 2.60E–06 0.003122

TMEM63C –1.65885 –1.67849 14.07606 0.000175564 0.032973
DUSP26 –1.65032 –1.58372 17.78676 2.47E–05 0.01052
GDF10 –1.6433 –0.98772 16.74222 4.28E–05 0.013937

PHLDA2 –1.6418 0.535531 15.23313 9.50E–05 0.022711
LTK –1.63865 –1.58262 21.49046 3.56E–06 0.003627

Continuation of the Table 4
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Gene logFC logCPM LR p-value FDR
LINC00937 –1.59819 –2.06279 19.78999 8.64E–06 0.005791

LHX4 –1.59619 –2.04904 15.95387 6.49E–05 0.017804
TRIM67 –1.59194 –0.12995 13.15763 0.000286351 0.041865
PLXDC1 –1.56106 –1.03286 27.39377 1.66E–07 0.000485
L1CAM –1.52989 0.276793 14.43591 0.00014501 0.02877

SERPINA12 –1.5203 –0.61139 29.44086 5.76E–08 0.000181
SLC30A3 –1.51219 0.315307 18.86388 1.40E–05 0.007172
FAM162B –1.50741 –1.53032 15.20718 9.63E–05 0.022759
CMPK2 –1.50377 –1.52247 15.84972 6.86E–05 0.018562
HSPB3 –1.50214 –0.89656 22.53947 2.06E–06 0.002714

TMEM191B –1.49286 –2.02685 13.79539 0.000203835 0.035154
TMEM156 –1.45208 –1.7143 12.83349 0.00034047 0.046385

TMOD1 –1.43636 –0.74442 21.17288 4.20E–06 0.00393
GPAT2P1 –1.40596 –1.70658 12.56297 0.000393465 0.049474
GPR27 –1.40062 0.30417 19.32474 1.10E–05 0.006177
CDH8 –1.39788 –0.37092 17.14553 3.46E–05 0.01235

CACNA2D3 –1.39769 2.11436 14.7683 0.000121562 0.025479
HEY2 –1.39228 2.025565 19.43099 1.04E–05 0.006177

ST8SIA2 –1.39093 –0.49211 17.53827 2.82E–05 0.010961
LINC02056 –1.38857 –1.62073 12.69264 0.000367098 0.048132

LRP2 –1.37985 –1.28367 23.2891 1.39E–06 0.00211
TGFA –1.37091 –0.4596 25.61174 4.17E–07 0.000853

WFDC1 –1.36441 2.938302 15.38643 8.76E–05 0.021703
HES4 –1.34238 2.562402 17.64995 2.66E–05 0.010735

PTH1R –1.33645 0.127042 20.95353 4.71E–06 0.004005
SYN2 –1.26943 1.567083 12.94207 0.000321279 0.044663

HOXC13 –1.26823 –0.37058 19.43103 1.04E–05 0.006177
RAI2 –1.26422 –0.02813 12.60263 0.000385204 0.048893

LONRF2 –1.21634 0.213618 16.65195 4.49E–05 0.014227
HEYL –1.2162 2.019352 18.99141 1.31E–05 0.00688

CSPG5 –1.21002 –1.72016 18.2359 1.95E–05 0.008993
HEY1 –1.20268 –0.67351 13.30536 0.000264648 0.040107

SLFN14 –1.19595 –1.77817 13.91193 0.000191579 0.034342
ADCY2 –1.1846 2.069172 15.06383 0.000103936 0.023548

RASGRP2 –1.17855 –0.48357 14.0089 0.000181948 0.033347
HOXC13-AS –1.17836 –1.28119 15.17852 9.78E–05 0.022901

WIPF3 –1.17172 –0.55415 19.45319 1.03E–05 0.006177
PDZD4 –1.16655 0.813909 17.21875 3.33E–05 0.01235
CCDC3 –1.16413 1.018813 15.73623 7.28E–05 0.0192
NPTX1 –1.15928 –1.25645 13.03203 0.000306208 0.04321
CNTN1 –1.15545 0.424462 12.51781 0.000403091 0.049474
ADAP1 –1.1469 –0.05287 25.73178 3.92E–07 0.000853
ITIH5 –1.13921 6.341922 13.5147 0.000236702 0.038058

LINC00547 –1.13275 0.376618 17.9216 2.30E–05 0.010009

Continuation of the Table 4
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SOX18 –1.12464 1.243256 15.23793 9.48E–05 0.022711

LGALS9 –1.11907 –0.08648 14.93291 0.000111402 0.024348
LINC01362 –1.07221 –1.14826 16.16752 5.80E–05 0.016806

NAP1L2 –1.06613 –1.41077 18.36179 1.83E–05 0.008698
SLC24A3 –1.06481 3.570396 14.93962 0.000111007 0.024348
KNDC1 –1.04924 –0.4902 12.71091 0.000363528 0.048132

TMEM151A –1.04248 0.0769 13.21936 0.000277072 0.041179
CX3CL1 –1.0329 –0.55568 19.79463 8.62E–06 0.005791
GNAO1 –1.02459 0.68505 12.50729 0.000405366 0.049604
KCNB1 –1.00315 1.293309 13.64308 0.000221055 0.036797

KL –0.99468 –1.5026 12.69037 0.000367543 0.048132
CDH15 –0.96785 3.09543 21.71385 3.16E–06 0.003496
FGFR3 –0.96435 1.855654 18.18702 2.00E–05 0.008993
RTN1 –0.95672 –0.85915 13.51578 0.000236566 0.038058

SORBS1 –0.91465 0.58739 12.917 0.000325611 0.045108
GPRC5C –0.91125 1.346111 17.15483 3.45E–05 0.01235
FOLR1 –0.90256 0.48096 12.62354 0.000380919 0.048707
ADCY1 –0.89133 0.016148 16.82263 4.10E–05 0.013637
CD247 –0.88122 –0.95038 20.89899 4.84E–06 0.004005

PHOSPHO1 –0.87691 –1.10453 19.19722 1.18E–05 0.00634
RNASEK –0.8769 –1.24948 15.80022 7.04E–05 0.018682
LRRC3 –0.87242 2.006731 17.69325 2.60E–05 0.010735
ACAN –0.87036 10.49467 19.38983 1.07E–05 0.006177

WDR87BP –0.86428 0.707841 14.02695 0.000180209 0.033327
AKAP6 –0.85959 2.440635 18.39394 1.80E–05 0.008698

TSPAN15 –0.85178 2.428343 15.81195 7.00E–05 0.018682
CARMIL2 –0.83114 –0.62056 12.58457 0.000388945 0.049215
FAM83H –0.80075 –0.53574 19.45025 1.03E–05 0.006177
MARK1 –0.79935 1.851002 17.57187 2.77E–05 0.010872
TPD52 –0.79811 0.520582 15.93241 6.56E–05 0.017887
DYSF –0.79424 5.192088 14.96679 0.00010942 0.0243

FAM169A –0.77762 –0.93632 13.44043 0.00024626 0.038563
NOG –0.77472 3.337352 13.13857 0.000289278 0.042065

ADRA1B –0.77342 –0.31774 12.53894 0.000398558 0.049474
SHANK2 –0.76822 2.303994 13.88607 0.000194233 0.034666
BRSK2 –0.74595 0.213741 13.98842 0.00018394 0.033562

DNAH10 –0.73965 –0.88267 13.19353 0.000280917 0.041599
RYR1 –0.73799 –0.41911 13.08336 0.00029793 0.042876
LEPR –0.73782 8.314245 13.50392 0.000238066 0.038058
SHC4 –0.73431 1.564619 15.21512 9.59E–05 0.022759
GIPR –0.73217 0.662796 15.49546 8.27E–05 0.021049

ENPEP –0.71631 1.032989 14.88719 0.000114135 0.024664
LINC02600 –0.71439 –0.12262 13.67039 0.000217862 0.036643

Continuation of the Table 4
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Continuation of the Table 4

Gene logFC logCPM LR p-value FDR

RASL11A –0.70716 2.188546 14.50159 0.000140041 0.028335
NPTXR –0.707 5.032025 13.53486 0.000234173 0.038058

TMEM54 –0.69739 0.126718 13.38037 0.000254272 0.039365
FOXCUT –0.694 0.89011 16.11985 5.95E–05 0.017113

ARHGEF16 –0.68756 1.494923 12.51938 0.000402753 0.049474
FAM89A –0.68137 3.487588 15.6699 7.54E–05 0.019758
GPAT2 –0.67632 1.848891 14.75442 0.00012246 0.025536
ITGAL –0.6678 0.188307 15.82416 6.95E–05 0.018682

IGFBP2 –0.66553 8.122881 13.76376 0.000207297 0.035238
CASQ1 –0.65423 –0.07883 13.49412 0.000239312 0.038058

IL7R –0.64593 4.366858 13.44428 0.000245754 0.038563
SLC16A14 –0.6331 0.173104 13.79726 0.000203632 0.035154

MICA –0.6268 2.579888 17.04439 3.65E–05 0.012756
GP1BB –0.614 2.047757 15.41856 8.61E–05 0.021598
DGKG –0.61299 1.438626 14.59997 0.000132917 0.027437
JPH2 –0.60239 5.92529 13.87562 0.000195316 0.0347
EDN1 –0.59572 2.794714 12.7033 0.00036501 0.048132

CCDC158 –0.5949 1.517501 14.05138 0.000177883 0.033047
ADRA2C –0.59458 3.684148 12.98359 0.000314233 0.043983
EGFL7 –0.59008 3.282763 14.19471 0.000164834 0.032081

ITGB1BP2 –0.58525 –0.13723 13.22001 0.000276977 0.041179
LYL1 –0.58504 0.516555 12.62508 0.000380605 0.048707

ZSWIM5 –0.5718 0.176161 15.03511 0.000105529 0.023569
QPRT –0.57054 1.791185 20.97442 4.65E–06 0.004005
CKB –0.54894 6.4886 21.15728 4.23E–06 0.00393

SYNGR2 –0.54869 4.063023 17.63299 2.68E–05 0.010735
C3orf70 –0.53617 2.258994 14.40221 0.000147629 0.029148

SEPTIN5 –0.53548 5.850167 17.71423 2.57E–05 0.010735
LGMN –0.5295 7.390066 13.44756 0.000245325 0.038563
CRIP1 –0.5278 5.915864 15.04709 0.000104862 0.023548

LINC00702 –0.52483 1.68425 18.78584 1.46E–05 0.007289
SLC37A1 –0.51686 2.285977 15.25594 9.39E–05 0.022704
SRRM3 –0.50967 1.020992 12.7151 0.000362716 0.048132
ZNF469 –0.50237 6.320352 21.44639 3.64E–06 0.003627
CRYAB –0.50215 8.082892 18.24895 1.94E–05 0.008993
DNAJC6 –0.50021 3.746198 16.17961 5.76E–05 0.016806
PPFIA3 –0.49208 1.786657 18.40639 1.78E–05 0.008698

CGREF1 –0.48846 3.916935 15.49059 8.29E–05 0.021049
DNAH5 –0.48696 1.114283 14.10597 0.000172794 0.032848
HES6 –0.48063 1.574922 20.41189 6.24E–06 0.00464

CSPG4 –0.47527 7.532437 13.59239 0.000227104 0.037427
IRAG1 –0.45697 4.251489 12.48452 0.000410338 0.04986

TBXA2R –0.45102 2.367274 17.31301 3.17E–05 0.011997
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Gene logFC logCPM LR p-value FDR

HS6ST1 –0.44571 5.327054 13.75934 0.000207785 0.035238
DMPK –0.44482 6.388112 29.74076 4.94E–08 0.000181

LYSMD2 –0.41007 1.900144 13.60586 0.00022548 0.03731
ANKRD9 –0.40992 4.467814 17.67927 2.61E–05 0.010735
NOTCH3 –0.40918 9.646443 15.15878 9.88E–05 0.022945

ISG20 –0.39744 2.672711 13.30319 0.000264954 0.040107
ADORA2B –0.39485 2.24752 14.86052 0.000115761 0.024756

GPC4 –0.39132 6.164633 16.08634 6.05E–05 0.017248
HSPB1 –0.38434 9.410244 22.73045 1.86E–06 0.002714

CYB5R1 –0.38118 5.770637 15.1487 9.94E–05 0.022945
SLC2A6 –0.3756 4.189715 15.40244 8.69E–05 0.021651
MSRB1 –0.3701 5.511516 14.55164 0.00013637 0.027729

ENDOD1 –0.36543 6.610153 14.06412 0.000176682 0.032973
SIX2 –0.36102 5.707384 13.44129 0.000246147 0.038563

RAVER2 –0.35903 4.2544 19.80343 8.58E–06 0.005791
TUBB2A –0.34554 5.187744 14.4532 0.000143686 0.02877
MIEN1 –0.34286 1.951609 13.04021 0.000304874 0.04321
RGS19 –0.33713 3.360489 12.52686 0.000401143 0.049474
PSEN2 –0.33481 4.018959 19.30059 1.12E–05 0.006177

GSN –0.32799 9.22319 21.84951 2.95E–06 0.003444
MAP2K3 –0.32026 6.621549 25.12837 5.36E–07 0.000963
MGAT5 –0.30153 6.814577 15.61065 7.78E–05 0.020257
SNTA1 –0.29562 5.384169 12.61557 0.000382546 0.048707
PTPN3 –0.29194 3.537507 18.04734 2.15E–05 0.00947
SORT1 –0.29142 7.62097 16.69438 4.39E–05 0.014021

SRD5A1 –0.28284 4.729072 25.68423 4.02E–07 0.000853
TPST2 –0.28145 6.976341 18.20642 1.98E–05 0.008993
CALM1 –0.27529 8.260706 17.00462 3.73E–05 0.012807
ROGDI –0.27022 4.824984 15.59218 7.86E–05 0.020327
DAB2IP –0.26752 5.951331 17.01764 3.70E–05 0.012807
DIRAS1 –0.2544 5.512156 12.89333 0.000329755 0.045378

FAM219A –0.25096 5.24701 21.62318 3.32E–06 0.003535
EHD1 –0.24981 7.699704 23.91399 1.01E–06 0.001584

BCAP31 –0.24721 7.121209 13.18563 0.000282103 0.041624
CTNNB1 –0.24353 8.746768 16.89087 3.96E–05 0.013263
RHOC –0.23978 8.846199 13.7611 0.000207591 0.035238
HDAC5 –0.23914 5.900239 15.55691 8.01E–05 0.020579
INPP5A –0.23369 5.185924 12.83613 0.00033999 0.046385

CUEDC1 –0.23047 6.109555 17.66143 2.64E–05 0.010735
LASP1 –0.22691 9.744295 18.35837 1.83E–05 0.008698
FEZ2 –0.22165 6.185835 13.57329 0.000229427 0.037658

IGHMBP2 –0.22138 4.300589 14.06617 0.00017649 0.032973
EMP3 –0.22047 7.715333 12.61791 0.000382068 0.048707

Continuation of the Table 4

Measurable Metrics of Mesenchymal Stem Cell Aging



20   СТМ ∫ 2025 ∫ vol. 17 ∫ No.5 

Advanced Researches

Continuation of the Table 4

Gene logFC logCPM LR p-value FDR
PREB –0.2187 5.839774 12.72631 0.000360548 0.048132

DDRGK1 –0.21732 5.515303 15.17375 9.81E–05 0.022901
HDAC11 –0.20866 4.352068 17.601 2.72E–05 0.010811
PITPNM1 –0.20846 5.371332 13.86789 0.000196121 0.0347
LDLRAP1 –0.20678 5.838397 13.05207 0.000302949 0.04321

ARHGEF10L –0.20518 5.919073 12.77922 0.000350491 0.04727
NPTN –0.20116 8.061508 14.95693 0.000109993 0.0243
SNX11 –0.20075 4.663461 17.13849 3.48E–05 0.01235
NAPA –0.19531 4.064688 14.61631 0.000131769 0.027338

TMEM109 –0.19072 6.596263 14.83157 0.000117551 0.024893
SPRYD3 –0.18655 6.312584 12.77161 0.000351921 0.04727
MAPRE3 –0.17976 4.672064 12.48096 0.000411121 0.04986

KIF1C –0.17932 8.266324 19.72121 8.96E–06 0.005907
PPP2CB –0.17822 6.651028 16.61981 4.57E–05 0.014249
RHBDD2 –0.17806 5.673687 19.5745 9.68E–06 0.006084

SELENOS –0.17695 6.242757 13.12572 0.00029127 0.042065
SLC27A4 –0.17567 5.214289 12.51806 0.000403037 0.049474
ARMCX3 –0.17348 6.995281 13.15464 0.000286808 0.041865
RMDN3 –0.16785 5.427733 13.50392 0.000238065 0.038058

LRRFIP2 –0.15981 6.355986 13.13037 0.000290548 0.042065
PPP2R1A –0.15488 7.886332 12.99828 0.000311777 0.043789
SEC14L1 –0.15293 6.814728 15.27059 9.32E–05 0.022663
EHBP1L1 –0.14069 7.671404 14.1189 0.000171611 0.032848

BLCAP –0.13762 6.3339 13.40166 0.000251401 0.039069
LZTS2 –0.13014 6.888952 12.78966 0.000348541 0.04727
GART 0.144891 5.426869 16.73461 4.30E–05 0.013937

NUDT21 0.146174 5.944158 12.67975 0.000369637 0.048132
PTGR3 0.151359 4.48144 12.68544 0.000368514 0.048132
HEATR6 0.168375 4.60623 16.04382 6.19E–05 0.017446
PSIP1 0.174873 5.351493 12.7672 0.00035275 0.04727

CMTR2 0.176201 4.585269 17.05302 3.64E–05 0.012756
RAD21 0.190763 5.803668 12.67307 0.00037096 0.048132
FUT8 0.197327 5.011198 12.5474 0.000396759 0.049474

CARD8 0.223999 3.931231 16.5491 4.74E–05 0.014568
S100PBP 0.246188 4.671997 20.87633 4.90E–06 0.004005

USP28 0.249203 4.178656 20.00123 7.74E–06 0.005454
BDH2 0.253192 3.366615 14.47918 0.000141717 0.028533

CASP4 0.256899 4.924556 20.10625 7.33E–06 0.005253
ZCCHC8 0.260018 4.188864 20.62361 5.59E–06 0.004311
B4GALT5 0.262408 5.952676 14.25092 0.000159983 0.031285
IRAK1BP1 0.275405 2.588981 13.84753 0.000198258 0.034817

IFI16 0.278147 6.395011 14.08274 0.000174942 0.032973
AMMECR1 0.278167 4.031016 13.71351 0.000212917 0.035959

SH2D4A 0.295128 5.667351 13.02964 0.000306599 0.04321
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Gene logFC logCPM LR p-value FDR
DPH5-DT 0.301347 2.46994 16.22833 5.61E–05 0.016806
TMEM116 0.310949 2.121463 13.07266 0.000299638 0.04297

DPYD 0.325722 5.376649 13.1719 0.000284178 0.041779
SRPX 0.330869 5.435651 18.19592 1.99E–05 0.008993

ARHGEF3 0.366546 2.935045 16.02308 6.26E–05 0.017517
SERAC1 0.374418 5.547421 16.32552 5.33E–05 0.016149
CDK14 0.379537 5.705607 16.07847 6.08E–05 0.017248
GLT8D2 0.386548 4.708298 16.93926 3.86E–05 0.013037
ESR1 0.387471 1.004918 13.63949 0.000221478 0.036797
FGF2 0.388723 4.715732 17.35999 3.09E–05 0.011813

PLSCR1 0.393244 3.954516 19.12633 1.22E–05 0.006494
RUNX1T1 0.395472 3.164303 13.35076 0.000258318 0.039691
IGFBP3 0.398171 12.15029 16.00963 6.30E–05 0.017522
FMNL2 0.401245 4.579389 13.79527 0.000203849 0.035154

ZEB1-AS1 0.405514 1.250406 16.35924 5.24E–05 0.015982
RHOBTB3 0.421879 4.703756 19.29777 1.12E–05 0.006177

PTPRE 0.456301 2.718066 15.96502 6.45E–05 0.017804
OR2A1-AS1 0.460911 0.345043 14.55567 0.000136078 0.027729

MISFA 0.467977 –0.147 12.54327 0.000397636 0.049474
SIM2 0.487467 2.960039 16.63429 4.53E–05 0.014249

CELF6 0.557284 –0.13149 16.17211 5.78E–05 0.016806
ABCA12 0.579788 0.062118 14.17864 0.000166247 0.032202
SEMA5A 0.582161 6.489798 17.20552 3.35E–05 0.01235

IRS2 0.591112 4.466242 14.10983 0.00017244 0.032848
LINC01277 0.786045 –0.53122 14.16108 0.000167806 0.032351

ZFPM2 0.801454 0.340995 12.91085 0.000326684 0.045108
TWIST2 0.831999 4.611952 12.65027 0.000375512 0.048415
KCNK15 0.843858 2.00907 16.57159 4.68E–05 0.014505

LYPLAL1-AS1 0.870673 –0.54629 20.83813 5.00E–06 0.004005
CTSK 0.892649 4.827643 20.56693 5.76E–06 0.004358

RARRES1 0.89793 1.201195 33.30716 7.87E–09 4.59E–05
CELSR1 0.899855 3.295554 12.7837 0.000349652 0.04727
EPHA3 0.942838 2.566101 16.95059 3.84E–05 0.013037

LINC00906 0.952773 –1.22901 19.67965 9.16E–06 0.005941
DENND2A 0.959001 0.240724 13.41387 0.00024977 0.038963
EIF4A2P3 1.000457 –1.55854 14.77132 0.000121367 0.025479

ABCA6 1.018584 2.061196 13.22672 0.000275986 0.041179
USP6 1.140794 –0.65042 13.33082 0.000261079 0.039816

C3 1.160315 4.277584 13.64326 0.000221033 0.036797
FOLR3 1.242528 –1.2425 14.01678 0.000181187 0.033347
LHX9 1.30102 1.764174 32.56135 1.15E–08 5.24E–05

ST3GAL6-AS1 1.400417 –2.06166 12.94407 0.000320936 0.044663
LINC02385 1.512722 –1.89567 18.89287 1.38E–05 0.007153

Continuation of the Table 4
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T a b l e  6
Performance of predictive models based on LASSO regression and RFR 
for the assessment of in vitro culture duration (passage number)

Indicators
RFR LASSO

Pearson correlation 
coefficient

Spearman correlation 
coefficient

Pearson correlation 
coefficient

Spearman correlation 
coefficient

Number of genes 
(r>|0.5|)

 
26

 
186

 
26

 
186

MAE 0.490 0.440 0.508 0.682
R2 0.261 0.323 0.583 0.267

Gene logFC logCPM LR p-value FDR

SLC15A5 1.512989 –1.98155 17.51228 2.85E–05 0.011007

CASP16P 1.513554 –2.07019 13.84536 0.000198486 0.034817

CNTNAP3B 1.785434 2.465226 16.2065 5.68E–05 0.016806

ZNF232 3.397878 –2.27352 14.85184 0.000116294 0.024756

End of the Table 4

T a b l e  5
Performance of predictive models based on LASSO regression and RFR  
for chronological age estimation

Indicators
RFR LASSO

Pearson correlation 
coefficient

Spearman correlation 
coefficient

Pearson correlation 
coefficient

Spearman correlation 
coefficient

Number of genes 
(r>|0.5|)

 
26

 
135

 
26

 
135

MAE 10.516 10.060 9.858 12.731
R2 0.684 0.742 0.755 0.655

р<0.05

NS

NS NS

Figure 2. Comparison of the absolute telomere 
length normalized to the haploid genome in 
cultured MSCs
Measurements were performed using quantitative 
PCR. The telomere length was compared between the 
umbilical MSCs at different passages and between the 
donor bone marrow MSCs isolated from the young (20–
25 years, n=3) and elderly (>60 years, n=3) donors. 
NS — p≥0.05, Student’s t-test 
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200 µМ H2O2, 4 h

а

c

b

Figure 3. Investigation of senescence associated β-galactosidase (SA-bGal) activity in the cultivated MSCs 
Cells were fixed and stained to determine SA-bGal, nuclear DNA was stained with the Hoechst dye; (a) comparison of 
bone marrow MSCs from the young (18–25 years) and elderly (>65 years) donor at cultivation passage 4; (b) comparison 
of umbilical cord MSCs at passage 6 under standard cultivation conditions and after a 4-hour treatment of 200 µM solution 
of hydrogen peroxide; (c) comparison of umbilical cord MSCs at cultivation passages 6, 9, 11, and 15 under standard 
cultivation conditions

passage 6                                           passage 9                                       passage 11                                      passage 15
Umbilical cord MSCs

Umbilical cord MSCsBone marrow MSCs
passage 4

Young donors Elderly donors Without treatment
passage 6

Moreover, we did not find significant differences 
comparing cell preparations from the donors of various 
ages (see Figure 4 (c), (d)). However, at the level of 

nuclear morphology, the reduction of H3K9me3 signal 
intensity was noted, which agrees with heterochromatin 
erosion observed in aging, and enlargement of nuclei 
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was observed at later passages and with increase of 
the donor age. Similar effects were also noted during 
continuous cultivation and stress-induced senescence of 
the umbilical cord MSCs (see Figure 4 (а)–(c)).

It is interesting to note that an increasing amount of 

evidence is accumulating in favor of using changes 
in nuclear morphology as an independent marker of 
cellular senescence. From the technical point of view, 
this analysis looks robust, since it actually requires 
microscopic analysis coupled with fluorescent nuclear 

Ki-67–

Ki-67+

200 µМ H2O2, 4 h

200 µМ  
H2O2, 4 h

p>0.05 p<0.01

а b

c d

Figure 4. Investigations of the nuclear marker Ki-67 in the MSC cultures
Formaldehyde-fixed MSC samples were stained with antibodies against the cell proliferation marker Ki-67 (a)–(c), the rate 
of Ki-67-positive nuclei on the samples was then determined (d). For visualization of nuclei, chromatin was stained with 
antibodies against histone modification H3K9me3, nuclear DNA was stained with Hoechst; (a) comparison of umbilical cord 
MSCs at passages 7, 9, 11, and 15; (b) comparison of umbilical cord MSCs at passage 6 under standard conditions and 
after 4-hour treatment of 200 µM solution of hydrogen peroxide; (c) comparison of staining the donor bone marrow MSCs at 
early and late cultivation passages; (d) the rate of Ki-67-positive cells on the stained MSC samples 
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staining. Moreover, available approaches in the machine 
learning image recognition accelerate processing and 
collection of the required statistical data. For this reason, 
to systematically analyze changes in nuclear morphology 
during aging, we trained a segmentation neural network 

model that describes nuclear morphology parameters 
such as area, roundness, and ellipse parameters (see 
“Materials and Methods”). The model demonstrated high 
segmentation quality on the test set (Figure 5 (a)). As 
the primary metric for evaluating model performance, 

p=0.042

p=0.019

p=0.037

p=4.8·10–6

p=5.8·10–33

p=1.4·10–16p=1.4·10–16

p=1.2·10–96

p=1.0·10–5

p=0.36
p=0.0052

Figure 5. Investigation of the MSC samples using neural network algorithm for image segmentation and 
classification
The image segmentation algorithm was trained based on the stained MSC samples, (a) upper image. For training the 
neural network, nuclear boundaries on the samples were manually annotated, (a) middle image. The trained algorithm 
successfully identified the nucleus boundaries, (a) lower image. The segmentation algorithm was subsequently used 
to estimate the sizes of MSC nuclei during passaging or under stress conditions (b, c, d), as well as for subsequent 
classification of cells into age classes (e). Figure (b) comparison of the nuclear areas in umbilical cord MSCs samples 
at passages 5, 7, 9, 11, 13, and 15; (c) comparison of nuclear areas in donor bone marrow MSCs samples at early and 
late cultivation passages; (d) comparison of the nuclear areas in umbilical cord MSC samples under standard cultivation 
conditions and after the 4-hour treatment of 200 µM solution of hydrogen peroxide; the numbers show mean area values; 
statistically significant differences were calculated using the Mann–Whitney test. Figure (e) a heat map of cell distribution 
across predicted classes in MSC samples from different passages. The neural network algorithm assigned cells to three 
classes: class 1 corresponded to early passages, class 2 to intermediate passages, class 3 to late passages. Cells that had 
an equal probability of belonging to two classes were assigned the value 1/2, 2/3, or 3/1. Cells for which a class could not 
be unambiguously determined were assigned the value “Unknown” (UNK)
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the Intersection over Union (IoU) measure was used. 
The IoU obtained for the model, equal to 0.88, indicates 
effective segmentation of cell nuclei and their boundaries 
even in the presence of noise and variations in the 
original images. For each nucleus, a set of parameters 
was calculated:

1) the center coordinates (X, Y) allow the nucleus to 
be matched with other cellular structures and used for 
spatial analysis; they are defined as the centroid derived 
from contour moments;

2) area — a marker of the overall size of the nucleus, 
an increase in area can be associated with cells 
transitioning to later passages; 

3) roundness characterizes shape compactness, 
an increase in the value indicates that the nucleus 
is acquiring a more circular shape, which may be 
associated with later stages of cellular senescence;

4) the ellipse semi-axes and orientation angle allow 
assessment of the degree of elongation and the nucleus 
orientation;

5) the Hausdorff distance serves as a criterion of 
approximation quality, low values (<10) indicate that the 
nucleus shape conforms to an ellipse.

Using the developed model, data on the size and 
shape of MSCs nuclei (Figure 5 (b)–(d)) from the donors 
of various ages (n=9308), subjected to varying the 
duration of in vitro cultivation (n=5157), and before and 
after the induction of stress-mediated cell senescence 
(n=564) were collected. Cells from donors in the older 
age group showed a broader range of nuclear sizes at the 
early stages of culture, whereas with increasing passage 
the nuclear sizes of cells from donors of different ages 
converged (see Figure 5 (c)). During prolonged culture 
the nuclear size also increased significantly, and this 
increase occurred gradually (see Figure 5 (b)). Stress-
induced senescence was associated with the most 
dramatic increase in nuclear size (see Figure 5 (d)).

At the next step, we evaluated the possibility of 
predicting the duration of cell cultivation, expressed as 
the ordinal number of the cultural passage, from nuclear 
morphology. The developed model classified the cells 
into three classes: early cultural passages (passages 
3–5), intermediate (passages 7–9), and late (passages 
11–15) according to the structure of the training dataset. 
As a result of the model’s operation, the analyzed cells 
were assigned a membership coefficient for one of 
the listed classes. The algorithm for calculating class-
membership coefficients comprised several stages. At 
the first stage, a cell region was generated by merging 
the boundary mask with the class masks; then, based 
on the segmentation results, the cell contour was 
extracted and filled. The next stage involved counting 
overlaps with the class masks to determine the number 
of pixels that simultaneously lay within the cell region 
and the mask of the corresponding class. Subsequently, 
normalization by cell area was performed, whereby for 
each class the ratio of overlapping pixels to the total cell 
area was converted into a proportion ranging from 0 to 

100%. These proportions were then adjusted so that 
their sum equaled 100%, and the corrected proportions 
were taken as the membership‑coefficient values for 
each class. Membership to the primary classes (1, 2, 
3) was defined by the highest coefficient value; a mixed 
class (1/2, 2/3, 3/1) was assigned when the difference 
between the coefficients of two classes did not exceed 
10%; an undefined class was assigned to a cell when the 
coefficients for all classes were close to each other (all 
values below 40%). Evaluation of the algorithm on the 
test set demonstrated adequate prediction of the actual 
culture passages of the studied cells (Figure  5  (e)). 
Starting from passage 9, the representation of cells in 
different classes increased, which may be related to 
rising morphological heterogeneity of cells associated 
with aging. With increasing passage number in the test 
sample, the proportion of cells classified as late‑passage 
cells steadily grew, most likely reflecting the dynamics of 
accumulation of senescent cells. 

Discussion

The key hallmark of cellular senescence is an 
irreversible arrest of the cell cycle mediated by the 
activation of cyclin-dependent kinase inhibitors 
p16INK4a and p21CIP1a [3]. In the studied models of 
MSC cellular senescence, the genes encoding the 
proteins p16INK4a, p21CIP1a also displayed the expected 
dynamics. Moreover, substantial changes occurred in 
cell morphology and nuclear architecture. A significant 
role in the alteration of nuclear and chromatin structure 
is played by the senescence-associated decrease 
in the expression level of LMNB1 gene [15, 34]. The 
reduction of the LMNB1 gene expression level was 
observed in all examined models of cellular aging and 
it was most pronounced in the replicative senescence 
of MSCs. Specific changes in chromatin structure also 
include the formation of the so-called senescence-
associated heterochromatin domains (SAHF and SAHD) 
together with decondensation of peri/centromeric 
heterochromatin regions (SADS) and global erosion 
of heterochromatin [16, 35–37]. These changes are 
involved in the regulation of both genes comprising 
the so-called senescence-associated proinflammatory 
phenotype [14, 35]. 

One of the factors determining the chromatin 
structure is a nuclear architectural protein, HMGB2, 
whose expression declines during cellular senescence 
and which, in particular, is considered as an early 
marker of cellular senescence [14, 38]. A decrease in 
the expression of the HMGB2 gene was also detected 
with the increase of chronological age of MSC donors, 
in stress‑induced and replicative senescence of 
MSCs. In the oncogene-induced senescence model 
HMGB2 has been shown to prevent propagation of 
heterochromatin in the genome regions containing 
genes forming the so-called senescence-associated 
proinflammatory phenotype, thereby helping to 
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maintain their expression [14]. Although such an 
effect has not been confirmed in the replicative 
senescence, however, the development of a more 
permissive chromatin state during aging — caused by 
disruptions of the machinery that maintains facultative 
and constitutive heterochromatin, remodeling of the 
nuclear spatial topology, and activation of intracellular 
pro‑inflammatory signaling pathways in response to 
DNA damage (cGAS‑STING) — are key factors that 
determine the formation of the SASP [15, 37, 39].

The concept of senescence-associated secretory 
phenotype unites the complex of proinflammatory 
cytokines, growth factors, and metalloproteinases [40]. 
The main factors that constitute the SASP are TNFα, 
MCP-1, MCP-2, SERPINE1/PAI-1, GM-CSF, GROα, β, γ, 
IGFBP-7, interleukins IL-1α, IL-6, IL-7, IL-8, chemokine 
MIP1α, and matrix metaloproteinases MMP-1, MMP-10, 
and MMP-3 [41]. However, it is important to note that the 
composition of SASP changes significantly depending 
on the cause of cellular senescence and the cell type 
[18]. Interestingly, when comparing MSCs from donors of 
different ages, no significant dynamics in the expression 
of genes encoding individual interleukins was detected. 
At the same time, during culture and under stress-
induced senescence, pro-inflammatory SASP factors 
such as IL-6, CXCL8, IL-1β became activated. This 
observation partially contradicts the previous reports of 
increased activity of these SASP factors in MSCs from 
older donors [42]. It should be emphasized, however, 
that in the cited study, a convincing difference in 
expression was demonstrated only for IL-6. Moreover, 
our analysis of published transcriptomes of BM-MSC 
samples (n=37) did not find reliable correlation between 
the expression of the investigated genes encoding 
individual SASP components and the age. All this 
together may reflect the heterogeneity and substantial 
contribution of donor-specific effects that complicate the 
analysis of age-related changes of gene expression. 
This is also supported by the performance of the 
regression model for predicting chronological age, which 
exhibited a relatively high value of the mean absolute 
error (R2=0.755; MAE=9.858 years).

It should be noted that previously described predictive 
models for estimating age from transcriptomic data 
have demonstrated comparable effectiveness [20, 43, 
44]. More accurate similar algorithms generally achieve 
maximum performance on the narrow age cohorts. 
Moreover, in the process of model development, the 
authors excluded multiple available samples from the 
analysis, since their inclusion significantly worsened 
the model quality [45]. Thus, the evaluation of gene 
expression dynamics may be used to the greater extent 
to analyze cellular senescence in vitro. In this case, 
typically only limited number of cell lines are investigated 
under relatively standard cultivation conditions, which 
is likely to reduce the variability of gene expression 
profiles inherent to the primary donor cell cultures and 
samples. Similarly, according to the data obtained by 

us, the assessment of MSC telomere length, at least on 
the small sample sets, is also rather applicable for the 
evaluation of replicative senescence in vitro.

Cytological analysis techniques are widely used 
to study cellular senescence. Cellular senescence is 
accompanied by characteristic morphological changes 
such as flattening, enlargement of the cell and nuclear 
size, as well as the appearance of specific protein 
markers, like activation of senescence-associated 
β-galactosidase [3, 46]. In the present work, the activity of 
senescence-associated β-galactosidase demonstrated 
its applicability for the qualitative assessment of both 
replicative and stress-induced senescence. However, 
the use of this marker for the evaluation of the functional 
state of the cells requires standardization of several 
conditions. First, it is necessary to control the efficiency 
of the reagent lot used in the work, since the pH shift 
of these reagents may essentially distort the results. 
Taking into account the necessity to analyze the 
freshly prepared cell slides, it is not always feasible in 
serial experiments conducted in research laboratories. 
Besides, cell preparations must demonstrate similar 
cell density, since the elevated confluence can lead to 
distorted results [47]. Interpretation of the obtained 
results at the early stages of the cellular senescence 
may be difficult due to the absence of a fixed threshold 
value of the β-galactosidase activity, making it difficult 
to classify cells as positive or negative for this marker. 
Altogether, this limits the application of this marker 
for studying cell preparations obtained from donors of 
various ages.

As an alternative, approaches to assessing cellular 
aging based on the analysis of several protein markers 
associated with proliferation, apoptosis, and DNA 
damage may be considered [17]. At the same time, the 
applicability of these approaches is again limited by the 
selection of optimal markers. For example, expression 
of the protein Ki-67 widely used as a proliferation 
marker depends on the stage of the cell cycle, while 
the variant of γH2Ax histone, the marker of the DNA 
damage, is detected at the late stages of cellular 
senescence [17, 48].

With the development of the machine learning 
methods, there was proposed a concept, according to 
which the processive analysis of cell morphology may 
serve as an integral metric of cell aging [21, 49, 50]. 
To estimate the applicability to this approach, we have 
developed a segmentation neural network model for 
the automated assessment of the nuclear morphology 
parameters. The analysis of BM-MSCs from the donors 
of various ages at the early passages has shown that 
the range of nucleus sizes was wider in the cell sample 
of the donors from the older age group. The nucleus 
size gradually increased during MSC cultivation and 
the size of the BM-MSC nuclei from the donors of 
various ages did not demonstrate significant differences 
between the age groups. The most prominent change 
of the nuclear morphology was observed in stress-
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induced cell senescence. The developed model also 
allows for effective classification of the individual cell 
passage as a surrogate metric of the cell aging stage for 
umbilical cord MSC samples. In this connection, it may 
be supposed to be also employed for the estimation of 
the functional state of the donor BM-MSC samples if 
there is a sufficient amount of datasets for the training 
sample. Besides, the application of similar models 
to assess the effects directed to the reduction of cell 
senescence manifestations, such as rejuvenation by 
partial reprogramming is of great interest [51, 52].

Conclusion

In the presented work, some aspects of phenotypic 
manifestations of various types of MSC senescence have 
been studied. At the level of individual gene expression, it 
has been shown that the change in the expression levels 
of CDKN1A, LMNB1, HMGB2, and SERPINE1/PAI1 is 
observed in all investigated models of cellular senescence. 
At the same time, the analysis of transcriptomic data has 
demonstrated significant donor-dependent heterogeneity 
of gene expression profiles, which hampers creation 
of effective predictive models for the evaluation of 
chronological age and the duration of the in vitro 
cultivation. At the same time, an alternative predictive 
metric of cellular aging — at least in the case of replicative 
aging — can be changes in nuclear morphology, whose 
dynamic analysis using neural‑network models allows us 
to estimate the duration of in vitro cultivation. Combining 
such approaches with other promising metrics, such as 
epigenetic clock algorithms, gives hope for developing 
functional algorithms to evaluate the phenomenon of 
cellular senescence.
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