Today: Feb 24, 2024
RU / EN
Last update: Feb 22, 2024
Cross-Polarization Optical Coherence Tomography in Evaluation of Atherosclerotic Plaque Structure

Cross-Polarization Optical Coherence Tomography in Evaluation of Atherosclerotic Plaque Structure

Gubarkova Е.V., Kirillin М.Yu., Sergeeva E.A., Kiseleva Е.B., Snopova L.B., Prodanets N.N., Sharabrin Е.G., Shakhov Е.B., Nemirova S.V., Gladkova N.D.
Key words: cross-polarization optical coherence tomography; CP OCT; atherosclerotic plaques; “vulnerable” atherosclerotic plaques; OCT signal numerical processing.
2013, volume 5, issue 4, page 45.

Full text

pdf
0
1494

The cross-polarization optical coherence tomography (CP OCT) technique allows for tissue structure imaging by registration of backscattered radiation in initial and orthogonal polarizations and further comparison of the obtained images. Spatial structure of collagen fibers gives rise not only to backscattering of probing radiation, but also to evolution of its polarization state during propagation through the tissue (depolarization). Collagen fibers of the fibrous cap play a key role in determining the stability of atherosclerotic plaques. Inflammation observed in atherosclerosis is the principal mechanism of collagen fibers disorganization, therefore, the assessment of the depolarizing properties of the fibrous cap can characterize an atherosclerotic plaque as being “vulnerable” to rupture.

The aim of the study was to evaluate CP OCT efficiency to determine the condition of collagen fibers of an atherosclerotic plaque fibrous cap, which characterize its “vulnerability”.

Materials and Methods. 54 post mortem samples of intact human aorta and aorta with atherosclerotic plaques at different stages were studied. The study involved 150 CP OCT-images in which the value of OCT signal in orthogonal polarization was used to evaluate the ratio of organized and disorganized by inflammation collagen fibers within the fibrous cap. For histological imaging comparison we used hematoxylin-eosine and picrosirius red staining with evaluation in polarized light. Numerical analysis of CP OCT-images was used as a complementary tool for visual assessment.

Results. We showed CP OCT to have significant advantages over the traditional OCT in the assessment of atherosclerotic plaque. In orthogonal CP OCT-image one can differentiate the main structural components of a plaque: a fibrous cap and a lipid core. The thickness of the fibrous cap in the orthogonal polarization image correlates with the thickness of the fibrous cap measured from histological preparations (correlation coefficient r=0.991, p<0.0001). The integral depolarization factor which characterizes the functional status of collagen fibers of fibrous cap has been used to differentiate the “vulnerable” atherosclerotic plaque. Its value within the range of 0.08–0.12 with 95% probability indicates low content of highly organized collagen in the fibrous cap, and hence, its tendency to rupture.

Conclusion. CP OCT is capable of assessing the functional state of collagen fibers of fibrous cap of an atherosclerotic plaque with high probability. Numerical analysis of CP-OCT images provides identification of “vulnerable” atherosclerotic plaques.

  1. Rukovodstvo po opticheskoy kogerentnoy tomografii [Handbook of optical coherence tomography]. Pod red. Gladkovoy N.D., Shakhovoy N.M., Sergeeva A.M. [Gladkova N.D., Shakhova N.M., Sergeev A.M. (editors)]. Moscow: Fizmatlit; 2007; 296 p.
  2. Brezinski M.E. Optical coherence tomography. Principles and applications. 2 ed; Elsevier; 2013.
  3. Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A. Optical coherence tomography. Science 1991 Nov 22; 254(5035): 1178–1181.
  4. Jang I.K., Bouma B.E., Kang D.H., Park S.J., Park S.W., Seung K.B., Choi K.B., Shishkov M., Schlendorf K., Pomerantsev E., Houser S.L., Aretz H.T., Tearney G.J. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound. J Am Coll Cardiol 2002 Feb 20; 39(4): 604–609.
  5. Brezinski M.E. Optical coherence tomography for identifying unstable coronary plaque. Int J Cardiol 2006 Feb 15; 107(2): 159–170.
  6. Choi D.-H., Hiro-Oka H., Shimizu K., Ohbayashi K. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second. Biomed Opt Express 2012 Dec 1; 3(12): 3067–3086.
  7. Brezinski М., Saunders К., Jesser C., Li Х., Fujimoto J. Index matching то improve ОСТ imaging through blood. Circulation 2001 Apr 17; 103(15): 1999–2003.
  8. Jang I.K., Tearney G.J., MacNeill B., Takano M., Moselewski F., Iftima N., Shishkov M., Houser S., Aretz H.T., Halpern E.F., Bouma B.E. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005 Mar 29; 111(12): 1551–1555.
  9. Yamaguchi T., Terashima M., Akasaka T., Hayashi T., Mizuno K., Muramatsu T., Nakamura M., Nakamura S., Saito S., Takano M., Takayama T., Yoshikawa J., Suzuki T. Safety and feasibility of an intravascular optical coherence tomography image wire system in the clinical setting. Am J Cardiol 2008 Mar 1; 101(5): 562–567.
  10. Prati F., Cera M., Ramazzotti V., Imola F., Giudice R., Albertucci M. Safety and feasibility of a new non-occlusive technique for facilitated intracoronary optical coherence tomography (OCT) acquisition in various clinical and anatomical scenarios. EuroIntervention 2007 Nov; 3(3): 365–370.
  11. Tearney G.J., Waxman S., Shishkov M., Vakoc B.J., Suter M.J., Freilich M.I., Desjardins A.E., Oh W.Y., Bartlett L.A., Rosenberg M., Bouma B.E. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging: first-in-man experience. JACC Cardiovasc Imaging 2008; 1: 752–761.
  12. Bezerra H.G., Guagliumi G., Valescchi O. Unraveling the lack of neointimal hyperplasia detected by intravascular ultrasound using optical coherence tomography: lack of spatial resolution or a true biological effect? J Am Coll Cardiol 2009; 10(Suppl A): 90A.
  13. Finn A.V., Joner M., Nakazawa G., Kolodgie F., Newell J., John M.C., Gold H.K., Virmani R. Pathological correlates of late drugeluting stent thrombosis: strut coverage as a marker of endothelialization. Circulation 2007; 115(18): 2435–2441.
  14. Gladkova N.D., Gubarkova E.V., Sharabrin Е.G., Stelmashok V.I., Beimanov А.E. Vozmojnosti i ogranichenia vnutrisosudistoi opticheskoy kogerentnoy tomografii [The Potential and limitations of intravascular optical coherence tomography]. Sovrem Tehnol Med — Modern Technologies in Medicine 2012; 4: 128–141.
  15. Terashima M., Kaneda H., Suzuki T. The role of optical coherence tomography in coronary intervention. Kor J Intern Med 2012; 27: 1–12.
  16. Virmani R., Kolodgie F.D., Burke A.P., Farb A., Schwartz S.M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vase Biol 2000; 20(5): 1262–1275.
  17. Honda Y., Fitzgerald P.J. New Drugs and Technologies. Frontiers in Intravascular Imaging Technologies. Circulation 2008 Apr 15; 117(15): 2024–2037.
  18. Langer H.F., Haubner R., Pichler B.J., Gawaz M. Radionuclide Imaging: a molecular key to the atherosclerotic plaque. J Am Coll Cardiol 2008 Jul 1; 52(1): 1–12.
  19. Nadkami S.K., Bouma B.E., de Boer J., Tearney G.J. Evaluation of collagen in atherosclerotic plaques: the use of two coherent laser-based imaging methods. Laser Med Sci 2009 May; 24(3): 439–445.
  20. Kubo T., Xu C., Wang Z., van Ditzhuijzen N.S., Bezerra H.G. Plaque and thrombus evaluation by optical coherence tomography. Int J Cardiovasc Imag 2011 Feb; 27(2): 289–298.
  21. MacNeill B.D., Jang I.K., Bouma B.E., Iftimia N., Takano M., Yabushita H., Shishkov M., Kauffman C.R., Houser S.L., Aretz H.T., DeJoseph D., Halpern E.F., Tearney G.J. Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004 Sep 1; 44(5): 972–979.
  22. Tearney G.J., Yabushita H., Houser S.L., Aretz H.T., Jang I.K., Schlendorf K.H., Kauffman C.R., Shishkov M., Halpern E.F., Bouma B.E. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 2003 Jan 7; 107(1): 113–119.
  23. Drexler W., Morgner U., Kartner F.X., Pitris C., Boppart S.A., Li X.D. In vivo ultrahighresolution optical coherence tomography. Opt Lett 1999; 24: 1221–1223.
  24. Yabushita H., Bourna B.E., Houser S.L., Aretz T., Jang I.K., Schlendorf K.H., Kauffman C.R., Shishkov M., Kang D.H., Halpern E.F., Tearney G.J. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002 Sep 24; 106(13): 1640–1645.
  25. Giattina S.D., Courtney B.K., Herz P.R., Harman M., Shortkroff S., Stamper D.L., Liu B., Fujimoto J.G., Brezinski M.E. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol 2006 Mar 8; 107(3): 400–409.
  26. Kuo W.C., Chou N.K., Chou C., Lai C.M., Huang H.J., Wang S.S., Shyu J.J. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Applied Optics 2007 Мау 1; 46(13): 2520–2527.
  27. Nadkami S., Pierce M., Park H., deBoer J., Houser S., Bressner J. Polarization-sensitive optical coherence tomography for the analysis of collagen content in atherosclerotic plaques. Circulation 2005; 112(17): 679.
  28. Nadkarni S.K., Pierce M.C., Park B.H., de Boer J.F., Whittaker P., Bouma B.E., Bressner J.E., Halpern E., Houser S.L., Tearney G.J. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol 2007 Apr 3; 49(13): 1474–1481.
  29. de Boer J.F., Milner T.E., van Gemert M.J., Nelson J.S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters 1997 Jun 15; 22(12): 934–936.
  30. Everett M.J., Schoenenberger K., Colston B.W., da Silva L.B. Birefringence characterization of biological tissue by use of optical coherence tomography. Optics Letters 1998 Feb 1; 23(3): 228–230.
  31. de Boer J.F., Milner T.E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J Biomed Optic 2002 Jul; 7(3): 359–371.
  32. Park B.H., Pierce M.C., Cense B., Yun S.H., Mujat M., Tearney G., Bouma B., de Boer J. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. Optics Express 2005 May 30; 13(11): 3931–3944.
  33. Park B.H., Saxer C., Srinivas S.M., Nelson J.S., de Boer J.F. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Optic 2001 Oct; 6(4): 474–479.
  34. Saxer C.E., de Boer J.F., Park B.H., Zhao Y., Chen Z., Nelson J.S. High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Optics Letters 2000 Sep 15; 25(18): 1355–1357.
  35. Zhang J., Jung W., Nelson J.S., Chen Z. Full range polarization-sensitive Fourier domain optical coherence tomography. Optics Express 2004 Nov 29; 12(24): 6033–6039.
  36. Oh W.Y., Yun S.H., Vakoc B.J., Shishkov M., Desjardins A.E., Park B.H., de Boer J.F., Tearney G.J., Bouma B.E. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express 2008 Jan 21; 16(2): 1096–1103.
  37. Suter M.J., Tearney G.J., Oh W.Y., Bouma B.E. Progress in intracoronary optical coherence tomography. IEEE Selected Topics in Quantum Electronics 2010 Jul–Aug; 16(4): 706–711.
  38. Suter M.J., Nadkarni S.K., Weisz G., Tanaka A., Jaffer F.A., Bouma B.E., Tearney G.J. Intravascular optical imaging technology for investigating the coronary artery. J Am Coll Cardiol Img 2011; 4(9): 1022–1039.
  39. Schmitt J.M., Xiang S.H. Cross-polarized backscatter in optical coherence tomography of biological tissue. Optics Letters 1998; 23(13): 1060–1062.
  40. Feldchtein F., Gelikonov V., Iksanov R., Gelikonov G., Kuranov R., Sergeev A., Gladkova N., Ourutina M., Reitze D., Warren J. In vivo OCT imaging of hard and soft tis-sue of the oral cavity. Optics Express 1998 Sep 14; 3(6): 239–250.
  41. Gladkova N., Streltsova O., Zagaynova E., Kiseleva E., Gelikonov V., Gelikonov G., Karabut M., Yunusova K., Evdokimova O. Cross polarization optical coherence tomography for early bladder cancer detection: statistical study. J Biophotonics 2011 Aug; 4(7–8): 519–532.
  42. Gladkova N., Kiseleva E., Robakidze N., Balalaeva I., Karabut M., Gubarkova E., Feldchtein F. Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography. J Biophotonics 2013 Apr; 6(4): 321–329
  43. Gladkova N., Kiseleva E., Streltsova O., Prodanets N., Snopova L., Karabut M., Gubarkova E., Zagaynova E. Combined use of fluorescence cystoscopy and cross-polarization OCT for diagnosis of bladder cancer and correlation with immunohistochemical markers. J Biophotonics 2013 Sep; 6(9): 687–698.
  44. Gelikonov V.M., Gelikonov G.V. New approach to cross-polarized optical coherence tomography based on orthogonal arbitrarily polarized modes. Laser Phys Lett 2006; 3(9): 445–451.
  45. Feldchtein F.I., Gelikonov V.M., Gelikonov G.V. Polarization-sensitive common path optical coherence reflectometry/tomography device. US patent 7,728,985 B2 2010 June 1.
  46. Junqueira L.C., Bignolas G., Brentani R.R. Picrosirius staining plus polarization microscopy, a specific method for collagen detection. J Histochem 1979; 11: 447–455.
  47. Stary H.C., Chandler A.B., Dinsmore R.E., Fuster V., Glagov S., Insull W.J., Rosenfeld M.E., Schwartz C.J., Wagner W.D., Wissler R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 1995; 15: 1512–1531.
  48. Rieber J., Meissner O., Babaryka G., Reim S., Oswald M., Koenig A., Schiele T.M., Shapiro M., Theisen K., Reiser M.F., Klauss V., Hoffmann U. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex vivo coronary specimens: a comparison with histology. Coron Artery Dis 2006 Aug; 17(5): 425–430.
  49. Kiseleva E.B., Gladkova N.D., Sergeeva E.A., Kirillin M.Yu., Gubarkova E.B., Karabut M.M., Balalaeva I.V., Streltsova O.S., Robakidze N.S., Maslennikova A.V., Kochueva М.V. Sposob ocenki funkcionalnogo sostoaynia tkani [Method for evaluating the functional state of collagen tissue]. Zayavka na izobretenie №2013135571 ot 29.07.2013 [The application for the invention №2013135571 from 29.07.2013].
Gubarkova Е.V., Kirillin М.Yu., Sergeeva E.A., Kiseleva Е.B., Snopova L.B., Prodanets N.N., Sharabrin Е.G., Shakhov Е.B., Nemirova S.V., Gladkova N.D. Cross-Polarization Optical Coherence Tomography in Evaluation of Atherosclerotic Plaque Structure. Sovremennye tehnologii v medicine 2013; 5(4): 45


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg