Today: Sep 29, 2021
RU / EN
Last update: Sep 2, 2021
Development and Preclinical Studies of Orthotopic Bone Implants Based on a Hybrid Construction from Poly(3-Hydroxybutyrate) and Sodium Alginate

Development and Preclinical Studies of Orthotopic Bone Implants Based on a Hybrid Construction from Poly(3-Hydroxybutyrate) and Sodium Alginate

Muraev A.A., Bonartsev A.P., Gazhva Yu.V., Riabova V.M., Volkov A.V., Zharkova I.I., Stamboliev I.A., Kuznetsova E.S., Zhuikov V.A., Myshkina V.L., Mahina T.K., Bonartseva G.A., Yakovlev S.G., Kudryashova K.S., Voinova V.V., Mironov A.A., Shaitan K.V., Gazhva S.I., Ivanov S.Yu.
Keywords: bone implants; polyhydroxyalkanoates; poly(3-hydroxybutyrate); sodium alginate; bone tissue regeneration; biocompatibility.
СТМ, 2016, volume 8, issue 4, pages 42-50.

Full text

html pdf
1232
1492

The aim of the investigation was to develop a technology of manufacturing bone implants based on a hybrid polymer construction composed of poly(3-hydroxybutyrate) and sodium alginate for guided bone regeneration using 3D printing method.

Materials and Methods. Complex shaped bone implants based on poly(3-hydroxybutyrate) and sodium alginate were manufactured by the method of two-stage leaching using a mold obtained by 3D printing. The appearance, morphology and structure of the obtained scaffolds were analyzed by means of scanning electron microscopy. Biocompatibility in vivo was determined based on the histology data of scaffolds implantation as bone substitutes.

Results. The study of the developed hybrid 3D scaffolds from poly(3-hydroxybutyrate) and sodium alginate showed that they perform a restrictive function providing conditions for regeneration of flat cranial bones in rats.

Conclusion. The developed hybrid 3D scaffolds do not interfere with normal osteogenesis and provide beneficial conditions for regeneration.

  1. Jardini A.L., Larosa M.A., Maciel Filho R., Zavaglia C.A., Bernardes L.F., Lambert C.S., Calderoni D.R., Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Craniomaxillofac Surg 2014; 42(8): 1877–1884, https://doi.org/10.1016/j.jcms.2014.07.006.
  2. van der Meer W.J., Bos R.R., Vissink A., Visser A. Digital planning of cranial implants. Br J Oral Maxillofac Surg 2013; 51(5): 450–452, https://doi.org/10.1016/j.bjoms.2012.11.012.
  3. Muraev А.А., Dymnikov А.B., Korotkova N.L., Kobets К.К., Ivanov S.Y. Planning technique in maxillofacial plasty. Sovremennye tehnologii v medicine 2013; 5(3): 57–62.
  4. Knox G. Surgical bone and cartilage shaping on demand with 3D CAD/CAM. Patent US 8,4838,63 B1. 2013.
  5. Jacotti M., Barausse C., Felice P. Posterior atrophic mandible rehabilitation with onlay allograft created with CAD-CAM procedure: a case report. Implant Dent 2014; 23(1): 22–28, https://doi.org/10.1097/ID.0000000000000023.
  6. Garagiola U., Grigolato R., Soldo R., Bacchini M., Bassi G., Roncucci R., De Nardi S. Computer-aided design/computer-aided manufacturing of hydroxyapatite scaffolds for bone reconstruction in jawbone atrophy: a systematic review and case report. Maxillofac Plast Reconstr Surg 2016; 38(1), https://doi.org/10.1186/s40902-015-0048-7.
  7. Mangano F., Macchi A., Shibli J.A., Luongo G., Iezzi G., Piattelli A., Caprioglio A., Mangano C. Maxillary ridge augmentation with custom-made CAD/CAM scaffolds. A 1-year prospective study on 10 patients. J Oral Implantol 2014; 40(5): 561–569, https://doi.org/10.1563/ AAID-JOI-D-12-00122.
  8. Kuznetsova D.S., Timashev P.S., Bagratashvili V.N., Zagaynova Е.V. Scaffold- and cell system-based bone grafts in tissue engineering (review). Sovremennye tehnologii v medicine 2014; 6(4): 201–212.
  9. OPM Receives FDA clearance for 3D printed OsteoFab patient-specific facial device. 2014. URL: https://www.oxfordpm.com/opm-receives-fda-clearance-3d-printed-osteofab-patient-specific-facial-device.
  10. Greenstein G., Carpentieri J.R. Utilization of d-PTFE barriers for post-extraction bone regeneration in preparation for dental implants. Compend Contin Educ Dent 2015; 36(7): 465–473.
  11. López N.I., Pettinari M.J., Nikel P.I., Méndez B.S. Polyhydroxyalkanoates: much more than biodegradable plastics. In: Advances in Applied Microbiology. Elsevier BV; 2015; p. 73–106, https://doi.org/10.1016/bs.aambs.2015.06.001.
  12. Venkatesan J., Bhatnagar I., Manivasagan P., Kang K.H., Kim S.K. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 2015; 72: 269–281, https://doi.org/10.1016/j.ijbiomac.2014.07.008.
  13. Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27(18): 3413–3431, https://doi.org/10.1016/j.biomaterials.2006.01.039.
  14. Bonartsev A.P., Zharkova I.I., Yakovlev S.G., Myshkina V.L., Mahina T.K., Voinova V.V., Zernov A.L., Zhuikov V.A., Akoulina E.A., Ivanova E.V., Kuznetsova E.S., Shaitan K.V., Bonartseva G.A. Biosynthesis of poly(3-hydroxybutyrate) copolymers by Azotobacter chroococcum 7B: a precursor feeding strategy. Prep Biochem Biotechnol 2016, https://doi.org/10.1080/10826068.2016.1188317. [Epub ahead of print].
  15. Bonartseva G.A., Akulina E.A., Myshkina V.L., Voinova V.V., Makhina T.K., Bonartsev A.P. Alginate biosynthesis by bacteria of the genus Azotobacter. Prikladnaya biokhimiya i mikrobiologiya 2017 (in print).
  16. Kundu J., Pati F., Hun Jeong Y., Cho D.-W. Biomaterials for biofabrication of 3D tissue scaffolds. In: Biofabrication. Micro- and nano-fabrication, printing, patterning and assemblies. Elsevier BV; 2013; p. 23–46, https://doi.org/10.1016/B978-1-4557-2852-7.00002-0.
  17. Gazhva J.V., Bonartsev А.P., Mukhametshin R.F., Zharkova I.I., Andreeva N.V., Makhina T.К., Myshkina V.L., Bespalova A.E., Zernov А.L., Ryabova V.M., Ivanova E.V., Bonartseva G.А., Mironov А.А., Shaitan K.V., Volkov А.V., Muraev А.А., Ivanov S.Y. In vivo and in vitro development and study of osteoplastic material based on hydroxyapatite, poly-3-hydroxybutyrate and sodium alginate composition. Sovremennye tehnologii v medicine 2014; 6(1): 6–13.
  18. Ivanov S.Y., Bonartsev A.P., Gazhva Y.V., Zharkova I.I., Mukhametshin R.F., Mahina T.K., Myshkina V.L., Bonartseva G.A., Voinova V.V., Andreeva N.V., Akulina E.A., Kharitonova E.S., Shaitan K.V., Muraev A.A. Development and preclinical studies of insulating membranes based on poly-3-hydroxybutyrate-co-3-hydroxyvalerate for guided bone regeneration. Biomed Khim 2015; 61(6): 717–723, https://doi.org/10.18097/PBMC20156106717.
  19. Bai H.Y., Chen G.A., Mao G.H., Song T.R., Wang Y.X. Three step derivation of cartilage like tissue from human embryonic stem cells by 2D–3D sequential culture in vitro and further implantation in vivo on alginate/PLGA scaffolds. J Biomed Mater Res A 2010; 94(2): 539–546, https://doi.org/10.1002/jbm.a.32732.
  20. Spicer P.P., Kretlow J.D., Young S., Jansen J.A., Kasper F.K., Mikos A.G. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc 2012; 7(10): 1918–1929, https://doi.org/10.1038/nprot.2012.113.
  21. Pellegrini G., Seol Y.J., Gruber R., Giannobile W.V. Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res 2009; 88(12): 1065–1076, https://doi.org/10.1177/0022034509349748.
  22. Lee C.H., Jin M.U., Jung H.M., Lee J.T., Kwon T.G. Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation. PLoS One 2015; 10(3): e0120051, https://doi.org/10.1371/journal.pone.0120051.
  23. Vasil’ev A.V. Vliyanie opioida perifericheskogo deystviya dalargina na kletochnuyu proliferatsiyu in vitro i reparativnuyu regeneratsiyu kostnoy tkani in vivo. Avtoref. dis. … kand. med. nauk [The influence of peripherally-acting opioid dalargin on cellular proliferation in vitro and reparative regeneration of bone tissue in vivo. PhD Thesis]. Moscow; 2015.
  24. Burr D.B., Allen M.R. Basic and applied bone biology. Academic Press; 2013; 392 p.
  25. Handbook of histology methods for bone and cartilage. An Y.H., Martin K.L. (editors). Springer Science + Business Media; 2003; 588 p., https://doi.org/10.1007/978-1-59259-417-7.
  26. Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26(27): 5474–5491, https://doi.org/10.1016/j.biomaterials.2005.02.002.
Muraev A.A., Bonartsev A.P., Gazhva Yu.V., Riabova V.M., Volkov A.V., Zharkova I.I., Stamboliev I.A., Kuznetsova E.S., Zhuikov V.A., Myshkina V.L., Mahina T.K., Bonartseva G.A., Yakovlev S.G., Kudryashova K.S., Voinova V.V., Mironov A.A., Shaitan K.V., Gazhva S.I., Ivanov S.Yu. Development and Preclinical Studies of Orthotopic Bone Implants Based on a Hybrid Construction from Poly(3-Hydroxybutyrate) and Sodium Alginate. Sovremennye tehnologii v medicine 2016; 8(4): 42–50, http://dx.doi.org/10.17691/stm2016.8.4.06


Journal in Databases

web_of_science.jpg

scopus.jpg

crossref.jpg

doaj.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

vak.jpg