Today: Apr 2, 2023
RU / EN
Last update: Feb 28, 2023
Replacement of Osteochondral Defects of Major Joints in Experiment

Replacement of Osteochondral Defects of Major Joints in Experiment

Airapetov G.A., Vorotnikov A.A., Venediktov A.A., Zagorodny N.V.
Key words: osteochondral defect; hyaline cartilage regeneration; extracellular collagen matrix; auto-cartilage; PRP; platelet-rich plasma.
2019, volume 11, issue 3, page 55.

Full text

html pdf
1075
1061

The aim of the study was to develop a novel treatment method of knee osteochondral defects consisting in injecting platelet-rich plasma and crushed hyaline cartilage under a collagen membrane, and assess the technique in experiment.

Materials and Methods. A prospective study was carried out on small cattle animals, 30 in number, aged 1.5–3 years weighing 20–30 kg. All subjects got a full-thickness defect to the subchondral bone, 4.5 mm in diameter. As a control, one of the joint defects was not replaced. Due to a replacement method, all animals were divided into three groups. One group animals underwent the replacement according to the developed technique: there were used an extracellular collagen matrix and the body resources (platelet-rich plasma and crushed autologous cartilage).

Results. The results were assessed 1 month and 3 months after surgery analyzing the type and degree of defect filling. Best results were found in the group, where a defect was covered by an extracellular collagen matrix with platelet-rich plasma and crushed autologous cartilage. The results of the no replacement group were comparable with the findings of other researchers, according to which osteochondral defects almost have no self-regeneration.

Conclusion. The suggested replacement technique for osteochondral defect using extracellular collagen matrix, autologous cartilage, and platelet-rich plasma is less aggressive compared to autochondroplasty, and the obtained results are more stable compared to microfracture or tunneling.

  1. Bozhokin M.S., Bozhkova S.A., Netylko G.I. Possibilities of current cellular technologies for articular cartilage repair (analytical review). Travmatologiya i ortopediya Rossii 2016; 22(3): 122–134.
  2. Belousova T.E., Karpova Zh.Y., Kovalyova M.V. The influence of low-frequency magnetophototherapy on the dynamics of electromyographic indexes in the rehabilitation of patients with combined pathology of the spine and major joints. Sovremennye tehnologii v medicine 2011; 3(2): 77–80.
  3. Yezhov M.Y., Yezhov I.Y., Kashko A.K., Kayumov A.Y., Zykin A.A., Gerasimov S.A. Unresolved issues of the cartilage and the bone regeneration (review). Uspekhi sovremennogo estestvoznaniya 2015; 5: 126–131.
  4. Chichasova N.V. Clinical rationale for the use of various teraflex formulations in osteoarthrosis. Sovremennaya revmatologiya 2010; 4(4): 59–64.
  5. Andia I., Abate M. Knee osteoarthritis: hyaluronic acid, platelet-rich plasma or both in association? Expert Opin Biol Ther 2014; 14(5): 635–649, https://doi.org/10.1517/14712598.2014.889677.
  6. Chang K.-V., Hung C.-Y., Aliwarga F., Wang T.-G., Han D.-S., Chen W.-S. Comparative effectiveness of platelet-rich plasma injections for treating knee joint cartilage degenerative pathology: a systematic review and meta-analysis. Arch Phys Med Rehabil 2014; 95(3): 562–575, https://doi.org/10.1016/j.apmr.2013.11.006.
  7. Dhollander A., Moens K., Van der Maas J., Verdonk P., Almqvist K.F., Victor J. Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Acta Orthop Belg 2014; 80(2): 251–259.
  8. Teplyashin A.S., Sharifullina S.Z., Chupikova N.I., Sepiashvili R.I. The perspective of use of multipotent mesenchymal stromal cells isolated from bone marrow and adipose tissue in regulation of regeneration of bone and cartilage tissues. Allergologiya i immunologiya 2015; 16(1): 138–148.
  9. Kozadaev M.N. Use of polycaprolactone-based matrices to stimulate the articular cartilage regeneration in experimental conditions. Teoreticheskie i prikladnye aspekty sovremennoy nauki 2014; 3–2: 128–130.
  10. Ulstein S., Årøen A., Røtterud J.H., Løken S., Engebretsen L., Heir S. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 2014; 22(6): 1207–1215, https://doi.org/10.1007/s00167-014-2843-6.
  11. Pridie K.H., Gordon G. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg 1959; 41(3): 618–619.
  12. Ewers B.J., Dvoracek-Driksna D., Orth M.W., Haut R.C. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J Orthop Res 2001; 19(5): 779–784, https://doi.org/10.1016/s0736-0266(01)00006-7.
  13. Shevtsov V.I., Makushin V.D., Stupina T.A., Stepanov M.A. The experimental aspects of studying articular cartilage reparative regeneration under subchondral zone tunneling with autologous bone marrow infusion. Geniy ortopedii 2010; 2: 5–10.
  14. Sovetnikov N.N., Kalsin V.A., Konoplyannikov M.A., Mukhanov V.V. Cell technologies and tissue engineering in the treatment of articular chondral defects. Klinicheskaya praktika 2013; 1: 52–66.
  15. Steadman J.R., Briggs K.K., Rodrigo J.J., Kocher M.S., Gill T.J., Rodkey W.G. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19(5): 477–484, https://doi.org/10.1053/jars.2003.50112.
  16. Kreuz P.C., Erggelet C., Steinwachs M.R., Krause S.J., Lahm A., Niemeyer P., Ghanem N., Uhl M., Südkamp N. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 2006; 22(11): 1180–1186, https://doi.org/10.1016/j.arthro.2006.06.020.
  17. Ulstein S., Årøen A., Røtterud J.H., Løken S., Engebretsen L., Heir S. Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up. Knee Surg Sports Traumatol Arthrosc 2014; 22(6): 1207–1215, https://doi.org/10.1007/s00167-014-2843-6.
  18. Knutsen G., Engebretsen L., Ludvigsen T.C., Drogset J.O., Grøntvedt T., Solheim E., Strand T., Roberts S., Isaksen V., Johansen O. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86(3): 455–464.
  19. Jacobi M., Villa V., Magnussen R.A., Neyret P. MACI — a new era? Sports Med Arthrosc Rehabil Ther Technol 2011; 3(1), https://doi.org/10.1186/1758-2555-3-10.
  20. Khan W.S., Johnson D.S., Hardingham T.E. The potential of stem cells in the treatment of knee cartilage defects. Knee 2010; 17(6): 369–374, https://doi.org/10.1016/j.knee.2009.12.003.
  21. Mafi R. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications — a systematic review of the literature. Open Orthop J 2011; 5(1): 242–248, https://doi.org/10.2174/1874325001105010242.
  22. Zhai L.J., Zhao K.Q., Wang Z.Q., Feng Y., Xing S.C. Mesenchymal stem cells display different gene expression profiles compared to hyaline and elastic chondrocytes. Int J Clin Exp Med 2011; 4(1): 81–90.
Airapetov G.A., Vorotnikov A.A., Venediktov A.A., Zagorodny N.V. Replacement of Osteochondral Defects of Major Joints in Experiment. Sovremennye tehnologii v medicine 2019; 11(3): 55, https://doi.org/10.17691/stm2019.11.3.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

doaj.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

vak.jpg