Today: Apr 2, 2023
Last update: Feb 28, 2023
Biodegradable Magnesium Alloys as Promising Materials for Medical Applications (Review)

Biodegradable Magnesium Alloys as Promising Materials for Medical Applications (Review)

Kiselevsky М.V., Anisimova N.Yu., Polotsky B.Е., Martynenko N.S., Lukyanova Е.А., Sitdikova S.М., Dobatkin S.V., Estrin Yu.Z.
Key words: biomaterials; biodegradation; biodegradable magnesium alloys; magnesium alloy-based implants.
2019, volume 11, issue 3, page 146.

Full text

html pdf

Non-degradable steel and titanium implants used to replace defects of the locomotor system or fabricate vascular stents provide maximum stability but have too many drawbacks. Currently, biodegradable magnesium alloys are considered as promising materials for creation of fixation devices in orthopedics and cardiovascular surgery. First attempts of using magnesium-based implants for bone fixation were made as early as at the beginning of the 20th century, however, due to a high corrosion rate and gas formation they turned out to be unsuccessful. Magnesium-based alloys developed recently demonstrate improved anti-corrosion and mechanical properties and are promising for manufacturing of biodegradable, biocompatible metal implants.

The microstructure of magnesium implants, their mechanical properties, electrochemical behavior, and kinetics of degradation are affected by alloying elements, methods of surface coating, and thermomechanical treatment of implants. All these factors determine the rate of alloy degradation in physiological environment and the level of gas formation. Although preclinical studies and even singular pilot clinical trials of the medical devices based on magnesium alloys have been carried out recently, there remain many unsolved issues preventing the introduction of biodegradable magnesium alloys in clinical practice.

This review discusses the most promising directions in the development of biomedical materials based on magnesium alloys, existing limitations, and challenges of their use. The possibility of employing biodegradable magnesium alloys in oncology is also shown.

  1. Ding W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials. Regen Biomater 2016; 3(2): 79–76,
  2. Niu J., Yuan G., Liao Y., Mao L., Zhang J., Wang Y., Huang F., Jiang Y., He Y., Ding W. Enhanced biocorrosion resistance and biocompatibility of degradable Mg–Nd–Zn–Zr alloy by brushite coating. Mater Sci Eng C Mater Biol Appl 2013; 33(8): 4833–4841,
  3. Kannan M.B., Raman R.K. In vitro degradation and mechanical integrity of calcium containing magnesium alloy in modified simulated body fluid. Biomaterials 2008; 29: 2306–2314,
  4. Lukyanova E., Anisimova N., Martynenkoa N., Kiselevsky M., Dobatkina S., Estrin Yu. Features of in vitro and in vivo behaviour of magnesium alloy WE43. Mater Lett 2018; 215: 308–311,
  5. Wang H.X., Guan S.K., Wang X., Ren C.X., Wang L.G. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 2010; 6(5): 1743–1748,
  6. Wolff M., Luczak M., Schaper J.G., Wiese B., Dahms M., Ebel T., Willumeit-Römer R., Klassen T. In vitro biodegradation testing of Mg-alloy EZK400 and manufacturing of implant prototypes using PM (powder metallurgy) methods. Bioact Mater 2018; 3(3): 213–217,
  7. Urban R.M., Jacobs J.J., Gilbert J.L., Galante J.O. Migration of corrosion products from modular hip prosthesis. Particle microanalysis and histopathological findings. J Bone Joint Surg 1994; 76(9): 1345–1359,
  8. Cooper H.J., Urban R.M., Wixson R.L., Meneghini R.M., Jacobs J.J. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am 2013; 95(10): 865–872,
  9. Kirkpatrick C.J., Alves A., Köhler H., Kriegsmann J., Bittinger F., Otto M., Williams D.F., Eloy R. Biomaterial induced sarcoma: a novel model to study preneoplastic change. Am J Pathol 2000; 156(4): 1455–1467,
  10. Kavalar R., Fokter S.K., Lamovec J. Total hip arthroplasty-related osteogenic osteosarcoma: case report and review of the literature. Eur J Med Res 2016; 21(1): 8,
  11. Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 2008; 12(5–6): 63–72,
  12. Yu Y., Lu H., Sun J. Long-term in vivo evolution of high-purity Mg screw degradation — local and systemic effects of Mg degradation products. Acta Biomater 2018; 71: 215–224,
  13. Hedayati R. Ahmadi S.M., Lietaert K., Tümer N., Li Y., Amin Yavari S., Zadpoor A.A. Fatigue and quasi-static mechanical behavior of bio-degradable porous biomaterials based on magnesium alloys. J Biomed Mater Res A 2018; 106(7): 1798–1811,
  14. Sanz-Herrera J.A., Reina-Romo E., Boccaccini A.R. In silico design of magnesium implants: macroscopic modeling. J Mech Behav Biomed Mater 2018; 79: 181–188,
  15. Pogorielov M., Husak E., Solodivnik A., Zhdanov S. Magnesium-based biodegradable alloys: degradation, application, and alloying elements. Interv Med Appl Sci 2017; 9(1): 27–38,
  16. Tian P., Liu X. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen Biomater 2015; 2(2): 135–151,
  17. Zhao N., Zhu D. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials. Metallomics 2015; 7(1): 118–128,
  18. Chen Y.M., Xiao M., Zhao H., Yang B.C. On the antitumor properties of biomedical magnesium metal. J Mater Chem B 2015; 3(5): 849–858,
  19. Agha N.A., Liu Z., Feyerabend F., Willumeit-Römer R., Gasharova B., Heidrich S., Mihailova B. The effect of osteoblasts on the surface oxidation processes of biodegradable Mg and Mg-Ag alloys studied by synchrotron IR microspectroscopy. Mater Sci Eng C Mater Biol Appl 2018; 91: 659–668,
  20. Wu Y., He G., Zhang Y., Liu Y., Li M., Wang X., Li N., Li K., Zheng G., Zheng Y., Yin Q. Unique antitumor property of the Mg–Ca–Sr alloys with addition of Zn. Sci Rep 2016; 6(1): 21736,
  21. Fazel Anvari-Yazdi A., Tahermanesh K., Hadavi S.M., Talaei-Khozani T., Razmkhah M., Abed S.M., Mohtasebi M.S. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg–Zn–Ca alloys. Mater Sci Eng C Mater Biol Appl 2016; 69: 584–597,
  22. Hakimi O., Ventura Y., Goldman J., Vago R., Aghion E. Porous biodegradable EW62 medical implants resist tumor cell growth. Mater Sci Eng C Mater Biol Appl 2016; 61: 516–525,
  23. Uddin M.S., Hall C., Murphy P. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci Technol Adv Mater 2015; 16(5): 053501,
  24. Gonzalez J., Hou R.Q., Nidadavolu E.P.S, Willumeit-Römer R., Feyerabend F. Magnesium degradation under physiological conditions — best practice. Bioact Mater 2018; 3(2): 174–185,
  25. Song Y-W., Shan D-Y., Chen R-S., Han E-H. Study on electroless Ni–P–ZrO2 composite coatings on AZ91D magnesium alloys. Surf Eng 2007; 23(5): 334–338,
  26. Atrens A., Song G.-L., Liu M., Shi Z., Cao F., Dargusch M.S. Review of recent developments in the field of magnesium corrosion. Adv Eng Mater 2015; 17(4): 400–453,
  27. Song G., Atrens A. Understanding magnesium corrosion: a framework for improved alloy performance. Adv Eng Mater 2003; 5: 837–858,
  28. Gao Y., Wang L., Gu X., Chu Z., Guo M., Fan Y. A quantitative study on magnesium alloy stent biodegradation. J Biomech 2018; 74: 98–105,
  29. Song G., Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1999; 1(1): 11–33,;2-n.
  30. Qin H., Zhao Y., An Z., Cheng M., Wang Q., Cheng T., Wang Q., Wang J., Jiang Y., Zhang X., Yuan G. Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg–Nd–Zn–Zr alloy. Biomaterials 2015; 53: 211–220,
  31. Johnston S., Dargusch M., Atrens A. Building towards a standardised approach to biocorrosion studies: a review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Science China Materials 2018; 61(4): 475–500,
  32. Zainal Abidin N.I., Rolfe B., Owen H., Malisano J., Martin D., Hofstetter J., Uggowitzer P.J., Atrens A. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros Sci 2013; 75: 354–366,
  33. Kirkland N.T. Magnesium biomaterials: past, present and future. Corros Eng Sci Technol 2012; 47(5): 322–328,
  34. Brooks E.K., Der S., Ehrensberger M.T. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions. Mater Sci Eng C Mater Biol Appl 2016; 60: 427–436,
  35. Koo Y., Jang Y., Yun Y. A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals. Mater Sci Eng B Solid State Mater Adv Technol 2017; 219: 45–54,
  36. Bornapour M., Celikin M., Cerruti M., Pekguleryuz M. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Mater Sci Eng C Mater Biol Appl 2014; 35: 267–282,
  37. Zhang S., Bi Y., Li J., Wang Z., Yan J., Song J., Sheng H., Guo H., Li Y. Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models. Bioact Mater 2017; 2(2): 53–62,
  38. Nidadavolu E.P.S., Feyerabend F., Ebel T., Willumeit-Römer R., Dahms M. On the determination of magnesium degradation rates under physiological conditions. Materials (Basel) 2016; 9(8): E627,
  39. Nene S.S., Kashyap B.P., Prabhu N., Estrin Y., Al-Samman T. Biocorrosion and biodegradation behavior of ultralight Mg–4Li–1Ca (LC41) alloy in simulated body fluid for degradable implant applications. J Mater Sci 2015; 50(8): 3041–3050,
  40. Nene S.S., Estrin Y., Kashyap B.P., Prabhu N., Al-Samman T., Luthringer B.J.C., Willumeit R. Introducing an ultralight, high-strength, biodegradable Mg–4Li–1Ca alloy. Advanced Biomaterials and Devices in Medicine 2015; 2(1): 32–36.
  41. Eddy Jai Poinern G., Brundavanam S., Fawcett D. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2013; 2(6): 218–240,
  42. Zhao D., Witte F., Lu F., Wang J., Li J., Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 2017; 112: 287–302,
  43. Xu L., Pan F., Yu G., Yang L., Zhang E., Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 2009; 30(8): 1512–1523,
  44. Xu L., Yu G., Zhang E., Pan F., Yang K. In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A 2007; 83(3): 703–711,
  45. Sato T., Shimizu Y., Odashima K., Sano Y., Yamamoto A., Mukai T., Ikeo N., Takahashi T., Kumamoto H. In vitro and in vivo analysis of the biodegradable behavior of a magnesium alloy for biomedical applications. Dent Mater J 2018; 38(1): 11–21,
  46. Feng Y., Zhu S., Wang L., Chang L., Hou Y., Guan S. Fabrication and characterization of biodegradable Mg–Zn–Y–Nd–Ag alloy: microstructure, mechanical properties, corrosion behavior and antibacterial activities. Bioact Mater 2018; 3(3): 225–235,
  47. Walker J., Shadanbaz S., Woodfield T.B., Staiger M.P., Dias G.J. Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res B Appl Biomater 2014; 102(6): 1316–1331,
  48. Kirkland N.T., Lespagnol J., Birbilis N., Staiger M.P. A survey of bio-corrosion rates of magnesium alloys. Corros Sci 2010; 52(2): 287–291,
  49. Castellani C., Lindtner R.A., Hausbrandt P., Tschegg E., Stanzl-Tschegg S.E., Zanoni G., Beck S., Weinberg A.M. Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control. Acta Biomater 2011; 7(1): 432–440,
  50. Mao L., Shen L., Niu J., Zhang J., Ding W., Wu Y., Fan R., Yuan G. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Nanoscale 2013; 5(20): 9517–9522,
  51. Wu G., Chan K.C., Zhu L., Sun L., Lu J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nature 2017; 545(7652): 80–83,
  52. Feyerabend F., Fischer J., Holtz J., Witte F., Willumeit R., Drucker H., Vogt C., Hort N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 2010; 6(5): 1834–1842,
  53. Wu Z., Curtin W.A. The origins of high hardening and low ductility in magnesium. Nature 2015; 526(7571): 62–67,
  54. Aung N.N., Zhou W. Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy. J Appl Electrochem 2002; 32: 1397–1401.
  55. Gusieva K., Davies C.H.J., Scully J.R., Birbilis N. Corrosion of magnesium alloys: the role of alloying. Int Mater Rev 2015; 60(3): 169–194,
  56. Brooks E.K., Ehrensberger M. Bio-corrosion of magnesium alloys for orthopaedic applications. J Funct Biomater 2017; 8(3): 38,
  57. Valiev R.Z., Zhilyaev A.P., Langdon T.G. Bulk nanostructured materials: fundamentals and applications. John Wiley & Sons, Inc.; 2014,
  58. Dobatkin S.V., Lukyanova E.A., Martynenko N.S., Anisimova N.Yu., Kiselevskiy M.V., Gorshenkov M.V., Yurchenko N.Yu., Raab G.I., Yusupov V.S., Birbilis N., Salishchev G.A., Estrin Yu.Z. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conference Series: Materials Science and Engineering 2017; 194: 012004,
  59. Jiang W., Tian Q., Vuong T., Shashaty M., Gopez C., Sanders T., Liu H. Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading. ACS Biomater Sci Eng 2017; 3(6): 936–950,
  60. Neacsu P., Staras A.I., Voicu S.I., Ionascu I., Soare T., Uzun S., Cojocaru V.D., Pandele A.M., Croitoru S.M., Miculescu F., Cotrut C.M., Dan I., Cimpean A. Characterization and in vitro and in vivo assessment of a novel cellulose acetate-coated Mg-based alloy for orthopedic applications. Materials (Basel) 2017; 10(7): 686,
  61. Wang H., Estrin Y., Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater Letters 2008; 62(16): 2476–2479,
  62. Op’t Hoog C., Birbilis N., Estrin Y. Corrosion of pure Mg as a function of grain size and processing route. Adv Eng Mater 2008; 10(6): 579–582,
  63. Ralston K., Birbilis N., Davies C. Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 2010; 63(12): 1201–1204,
  64. Zhang J., Xu C., Jing Y., Lv S., Liu S., Fang D. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: formation of stacking faults. Sci Rep 2015; 5: 13933,
  65. Kirkland N.T., Birbilis N., Staiger M.P. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 2012; 8(3): 925–936,
  66. Harandi S.E., Mirshahi M., Koleini S., Idris M.H., Jafari H., Kadir M.R.A. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg–Ca binary alloy. Mater Res 2013; 16(1): 11–18,
  67. Jiang W., Cipriano A.F., Tian Q., Zhang C., Lopez M., Sallee A., Lin A., Cortez Alcaraz M.C., Wu Y., Zheng Y., Liu H. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomater 2018; 72: 407–423,
  68. Makkar P., Sarkar S.K., Padalhin A.R., Moon B.G., Lee Y.S., Lee B.T. In vitro and in vivo assessment of biomedical Mg–Ca alloys for bone implant. J Appl Biomater Funct Mater 2018; 16(3): 126–136,
  69. Bian D., Zhou W., Liu Y., Li N., Zheng Y., Sun Z. Fatigue behaviors of HP–Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomater 2016; 41: 351–360,
  70. Mareci D., Bolat G., Izquierdo J., Crimu C., Munteanu C., Antoniac I., Souto R.M. Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer’s solution: revealing the impact of local pH distributions during in-vitro dissolution. Mater Sci Eng C Mater Biol Appl 2016; 60: 402–410,
  71. Zhou Y.L., Li Y., Luo D.M., Ding Y., Hodgson P. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg–Mn–Zn–Nd alloys for biomedical applications. Mater Sci Eng C Mater Biol Appl 2015; 49: 93–100,
  72. Yao H., Wen J., Xiong Y., Liu Y., Lu Y., Cao W. Microstructures, mechanical properties, and corrosion behavior of As-Cast Mg–2.0Zn–0.5Zr–xGd (wt %) biodegradable alloys. Materials (Basel) 2018; 11(9): E1564,
  73. Bian D., Deng J., Li N., Chu X., Liu Y., Li W., Cai H., Xiu P., Zhang Y., Guan Z., Zheng Y., Kou Y., Jiang B., Chen R. In vitro and in vivo studies on biomedical magnesium low-alloying with elements gadolinium and zinc for orthopedic implant applications. ACS Appl Mater Interfaces 2018; 10(5): 4394–4408,
  74. Cipriano A.F., Lin J., Miller C., Lin A., Cortez Alcaraz M.C., Soria P., Liu H. Anodization of magnesium for biomedical applications — processing, characterization, degradation and cytocompatibility. Acta Biomater 2017; 62: 397–417,
  75. Shin K.S., Jung H.C., Bian M.Z., Nam N.D., Kim N.J. Characterization of biodegradable magnesium single crystals with various crystallographic orientations. Eur Cells Mater 2013; 26: 4.
  76. Tian P., Liu X.Y. Anticorrosion and cytocompatibility of biodegradable polylactide/MgO composite coating on AZ31 alloy. Proceedings of the 5th Symposium on Biodegradable Metals 2013; 26: 48.
  77. Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006; 27(9): 1728–1734,
  78. Sasikumar Y., Kumar A.M., Babu R.S., Rahman M.M., Samyn L.M., de Barros A.L.F. Biocompatible hydrophilic brushite coatings on AZX310 and AM50 alloys for orthopaedic implants. J Mater Sci Mater Med 2018; 29(8): 123,
  79. Li M., Wang W., Zhu Y., Lu Y., Wan P., Yang K., Zhang Y., Mao C. Molecular and cellular mechanisms for zoledronic acid-loaded magnesium-strontium alloys to inhibit giant cell tumors of bone. Acta Biomater 2018; 77: 365–379,
  80. Liu C., Ren Z., Xu Y., Pang S., Zhao X., Zhao Y. Biodegradable magnesium alloys developed as bone repair materials: a review. Scanning 2018; 2018: 9216314,
  81. Zhang B.P., Wang Y., Geng L. Research on Mg–Zn–Ca alloy as degradable biomaterial. In: Biomaterials — physics and chemistry. InTech; 2011,
  82. Farraro K.F., Kim K.E., Woo S.L.-Y., Flowers J.R., McCullough M.B. Revolutionizing orthopaedic biomaterials: the potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J Biomech 2014; 47(9): 1979–1986,
  83. Thomann M., Krause C., Bormann D., von der Höh N., Windhagen H., Meyer-Lindenberg A. Comparison of the resorbable magnesium. Alloys LAE442 und MgCa0.8 concerning their mechanical properties, their progress of degradation and the bone-implant-contact after 12 months implantation duration in a rabbit model. Materwiss Werksttech 2009; 40(1–2): 82–87,
  84. Witte F., Kaese V., Haferkamp H., Switzer E., Meyer-Lindenberg A., Wirth C.J., Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005; 26(17): 3557–3563,
  85. Trincă L.C., Fântânariu M., Solcan C., Trofin A.L., Burtan L., Acatrinei D.M., Stanciu S., Istrate B., Munteanu C. In vivo degradation behavior and biological activity of some new Mg–Ca alloys with concentration’s gradient of Si for bone grafts. Appl Surf Sci 2015; 352: 140–150,
  86. Wang J., Jiang H., Bi Y., Sun Je., Chen M., Liu D. Effects of gas produced by degradation of Mg–Zn–Zr alloy on cancellous bone tissue. Mater Sci Eng C Mater Biol Appl 2015; 55: 556–561,
  87. Han J., Wan P., Ge Y., Fan X., Tan L., Li J., Yang K. Tailoring the degradation and biological response of a magnesium–strontium alloy for potential bone substitute application. Mater Sci Eng C Mater Biol Appl 2016; 58: 799–811,
  88. Lambotte A. L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse [The use of magnesium as material for osteosynthesis]. Bull Mem Soc Nat Chir 1932; 28: 1325–1334.
  89. Verbrugge J. Le matériel métallique résorbable en chirurgie osseuse [Resorbable metallic material in bone surgery]. Presse Med 1934; 23: 460–465.
  90. Lee J.W., Han H.S., Han K.J., Park J., Jeon H., Ok M.R., Seok H.K., Ahn J.P., Lee K.E., Lee D.H., Yang S.J., Cho S.Y., Cha P.R., Kwon H., Nam T.H., Han J.H., Rho H.J., Lee K.S., Kim Y.C., Mantovani D. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A 2016; 113(3): 716–721,
  91. Windhagen H., Radtke K., Weizbauer A., Diekmann J., Noll Y., Kreimeyer U., Schavan R., Stukenborg-Colsman C., Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online 2013; 12(1): 62,
  92. Yazdimamaghani M., Razavi M., Vashaee D., Moharamzadeh K., Boccaccini A.R., Tayebi L. Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl 2017; 71: 1253–1266,
  93. Kang S.H., Park K.W., Kang D.Y., Lim W.H., Park K.T., Han J.K., Kang H.J., Koo B.K., Oh B.H., Park Y.B., Kandzari D.E., Cohen D.J., Hwang S.S., Kim H.S. Biodegradable-polymer drug-eluting stents vs. bare metal stents vs. durable-polymer drug-eluting stents: a systematic review and Bayesian approach network meta-analysis. Eur Heart J 2014; 35(17): 1147–1158,
  94. Peuster M., Beerbaum P., Bach F.-W., Hauser H. Are resorbable implants about to become a reality? Cardiol Young 2006; 16(2): 107–116,
  95. Waksman R., Pakala R., Kuchulakanti P.K., Baffour R., Hellinga D., Seabron R., Tio F.O., Wittchow E., Hartwig S., Harder C., Rohde R., Heublein B., Andreae A., Waldmann K.H., Haverich A. Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheter Cardiovasc Interv 2006; 68(4): 607–617,
  96. Erbel R., Di Mario C., Bartunek J., Bonnier J., de Bruyne B., Eberli F.R., Erne P., Haude M., Heublein B., Horrigan M., Ilsley C., Böse D., Koolen J., Lüscher T.F., Weissman N., Waksman R.; PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) Investigators. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 2007; 369(9576): 1869–1875,
  97. Haude M., Erbel R., Erne P., Verheye S., Degen H., Böse D., Vermeersch P., Wijnbergen I., Weissman N., Prati F., Waksman R., Koolen J. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet 2013; 381(9869): 836–844,
  98. Haude M., Ince H., Abizaid A., Toelg R., Lemos P.A., von Birgelen C., Christiansen E.H., Wijns W., Neumann F.J., Kaiser C., Eeckhout E., Lim S.T., Escaned J., Garcia-Garcia H.M., Waksman R. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet 2016; 387(10013): 31–39,
  99. Lafont A., Yang Y. Magnesium stent scaffolds: DREAMS become reality. Lancet 2016; 387(10013): 3–4,
  100. Haude M., Ince H., Tölg R., Lemos P.A., von Birgelen C., Christiansen E.H., Wijns W., Neumann F.J., Eeckhout E., Garcia-Garcia H.M., Waksman R. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold (DREAMS 2G) in patients with de novo coronary lesions: 3-year clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. EuroIntervention 2019. [Epub ahead of print]
  101. Onuma Y., Ormiston J., Serruys P.W. Bioresorbable scaffold technologies. Circ J 2011; 75(3): 509–520,
Kiselevsky М.V., Anisimova N.Yu., Polotsky B.Е., Martynenko N.S., Lukyanova Е.А., Sitdikova S.М., Dobatkin S.V., Estrin Yu.Z. Biodegradable Magnesium Alloys as Promising Materials for Medical Applications (Review). Sovremennye tehnologii v medicine 2019; 11(3): 146,

Journal in Databases