Today: May 26, 2024
RU / EN
Last update: May 3, 2024
Mechanisms of Light and Music Stimulation Controlled by a Person’s Own Brain and Heart Biopotentials or Those of Another Person

Mechanisms of Light and Music Stimulation Controlled by a Person’s Own Brain and Heart Biopotentials or Those of Another Person

Fedotchev A.I., Parin S.B., Savchuk L.V., Polevaya S.A.
Key words: audio-visual stimulation; exposure to light and music; EEG; heart rate; one’s own–another person’s biopotentials; interoceptive signals; correction of stress-induced states.
2020, volume 12, issue 4, page 23.

Full text

html pdf
1332
1266

The aim of the study was to carry out comparative analysis of effects observed in subjects exposed to light and music stimulation controlled by their own brain and heart biopotentials (closed-loop method) or biopotentials of another person.

Materials and Methods. Volunteers under stress participated in two experiments in pairs. In the first experiment, light and music stimulation effects formed in each subject in a pair on the basis of their own brain and heart biopotentials, while in the second experiment, they formed on the basis of biopotentials of the other subject.

Results. Both types of exposure caused reducing the tension of the regulatory systems in the body, reducing stress levels and improving the emotional state due to the mechanisms of multisensory integration and neuroplasticity. A significant increase in the power of the main EEG rhythms, accompanied by significant positive changes in psychological testing results and positive emotional responses to stimulation was observed only during light and music stimulation controlled by the subjects’ own brain and heart biopotentials. These data are attributable to the integration of perception and processing of interoceptive signals significant for humans into the resonance mechanisms of the central nervous system, providing normalization of functional state due to stimulation.

Conclusion. The data obtained can be used for developing the effective methods of personalized light and music stimulation aimed at timely elimination of functional disorders and returning the human body to homeostasis.

  1. Korolev V.A., Savchenko V.V. Audio-visual stimulation as a method to improve the functional status and health (literature review). Prikladnye problemy bezopasnosti tehnicheskih i biotehnicheskih system 2018; 1: 35–40.
  2. Magosso E., Cuppini C., Bertini C. Audiovisual rehabilitation in hemianopia: a model-based theoretical investigation. Front Comput Neurosci 2017; 11: 113, https://doi.org/10.3389/fncom.2017.00113.
  3. Ostrolenk A., Bao V.A., Mottron L., Collignon O., Bertone A. Reduced multisensory facilitation in adolescents and adults on the autism spectrum. Sci Rep 2019; 9(1): 11965, https://doi.org/10.1038/s41598-019-48413-9.
  4. Pan F., Zhang L., Ou Y., Zhang X. The audio-visual integration effect on music emotion: behavioral and physiological evidence. PLoS One 2019; 14(5): e0217040, https://doi.org/10.1371/journal.pone.0217040.
  5. Grasso P.A., Benassi M., Làdavas E., Bertini C. Audio-visual multisensory training enhances visual processing of motion stimuli in healthy participants: an electrophysiological study. Eur J Neurosci 2016; 44(10): 2748–2758, https://doi.org/10.1111/ejn.13221.
  6. Fedotchev A.I., Dvorianinova V.V., Velikova S.D., Zemlyanaya А.А. Modern technologies in studying the mechanisms, diagnostics, and treatment of autism spectrum disorders (review). Sovremennye tehnologii v medicine 2019; 11(1): 31–39, https://doi.org/10.17691/stm2019.11.1.03.
  7. Golovin M.S., Aizman R.I., Balioz N.V., Krivoshchekov S.G. Effect of audiovisual stimulation on the psychophysiological functions in track-and-field athletes. Human Physiology 2015; 41(5): 532–538, https://doi.org/10.1134/s0362119715050047.
  8. Barreto-Silva V., Bigliassi M., Chierotti P., Altimari L.R. Psychophysiological effects of audiovisual stimuli during cycle exercise. Eur J Sport Sci 2018; 18(4): 560–568, https://doi.org/10.1080/02640414.2018.1514139.
  9. Bigliassi M., Greca J.P.A., Barreto-Silva V., Chierotti P., de Oliveira A.R., Altimari L.R. Effects of audiovisual stimuli on psychological and psychophysiological responses during exercise in adults with obesity. J Sports Sci 2019; 37(5): 525–536, https://doi.org/10.1080/02640414.2018.1514139.
  10. Naro A., Leo A., Bruno R., Cannavò A., Buda A., Manuli A., Bramanti A., Bramanti P., Calabrò R.S. Reducing the rate of misdiagnosis in patients with chronic disorders of consciousness: is there a place for audiovisual stimulation? Restor Neurol Neurosci 2017; 35(5): 511–526, https://doi.org/10.3233/RNN-170741.
  11. Sysoev V.N., Chebykina A.V., Dushkina M.A., Dergachev V.B. Evaluation of the effectiveness of single session audiovisual stimulation for the organism functional state’s correction. Vestnik Rossijskoj voenno-medicinskoj akademii 2018; 3(63): 128–132.
  12. Dudelzon V.A., Kalmanov A.S., Bulavin V.V. Application of various modes of audiovisual stimulation to optimize the functional state of military personnel. Voenno-medicinskij zhurnal 2018; 339(5): 47–51.
  13. Fedotchev A.I., Parin S.B., Polevaya S.A. Use of cardiac and cerebral biopotential-operated neurointerfaces in management of stress-induced disorders. Vestnik Rossijskogo fonda fundamental’nyh issledovanij. Gumanitarnye i obschestvennye nauki 2019; 1: 144–152, https://doi.org/10.22204/2587-8956-2019-094-01-144-152.
  14. Fedotchev A.I., Parin S.B., Polevaya S.A., Zemlianaia A.A. Effects of audio-visual stimulation automatically controlled by the bioelectric potentials from human brain and heart. Human Physiology 2019; 45(5): 523–526, https://doi.org/10.1134/s0362119719050025.
  15. Polevaya S.A. Integrative principles of coding and recognition of sensory information. Features of conscious perception of image and sound under stress condition. Vestnik Novosibirskogo gosudarstvennogo universiteta 2008; 2(2): 106–117.
  16. Kataev A.A., Bakhchina A.V., Polevaya S.A., Fedotchev A.I. Connection between subjective and objective estimates of human functional state (approbation of rapid test for measurement of stress level). Vestnik psihofiziologii 2017; 2: 62–67.
  17. Polevaya S.A., Nekrasova M.M., Runova E.V., Bakhchina A.V., Gorbunova N.A., Bryantseva N.V., Kozhevnikov V.V., Shishalov I.S., Parin S.B. Discrete monitoring and telemetry of heart rate in the process of working on a computer to assess and prevent fatigue and stress. Medicinskij al’manah 2013; 2(26): 151–155.
  18. Fedotchev A.I., Bondar’ A.T., Bakhchina A.V., Parin S.B., Polevaya S.A., Radchenko G.S. Music-acoustic signals controlled by subject’s brain potentials in the correction of unfavorable functional states. Uspehi fiziologicheskih nauk 2016; 47(1): 69–79.
  19. Polevaya S.A., Eremin E.V., Bulanov N.A., Bakhchina А.V., Kovalchuk A.V., Parin S.B. Event-related telemetry of heart rhythm for personalized remote monitoring of cognitive functions and stress under conditions of everyday activity. Sovremennye tehnologii v medicine 2019; 11(1): 109–115, https://doi.org/10.17691/stm2019.11.1.13.
  20. Golovin M.S., Aizman R.I., Balioz N.V., Krivoschekov S.G. Integration of functional, psychophysiological, and biochemical processes in athletes after audiovisual stimulation. Human Physiology 2018; 44(1): 54–59, https://doi.org/10.1134/s0362119718010073.
  21. Piradov M.A., Chernikova L.A., Suponeva N.A. Brain plasticity and modern neurorehabilitation technologies. Vestnik Rossijskoj akademii nauk 2018; 88(4): 299–317, https://doi.org/10.7868/S0869587318040023.
  22. Fedotchev A.I. Analysis of resonant EEG reactions in assessing the effectiveness of sensory effects. Fiziologia cheloveka 1997; 23(4): 117–132.
  23. Ashanina E.N., Senik M.N. Modern researches of techniques of audio-visual entertainment (review of domestic and foreign literature for 2011–2018). Vestnik psihoterapii 2018; 67(72): 44–65.
  24. Quadt L., Critchley H.D., Garfinkel S.N. The neurobiology of interoception in health and disease. Ann N Y Acad Sci 2018; 1428(1): 112–128, https://doi.org/10.1111/nyas.13915.
  25. Khalsa S.S., Adolphs R., Cameron O.G., Critchley H.D., Davenport P.W., Feinstein J.S., Feusner J.D., Garfinkel S.N., Lane R.D., Mehling W.E., Meuret A.E., Nemeroff C.B., Oppenheimer S., Petzschner F.H., Pollatos O., Rhudy J.L., Schramm L.P., Simmons W.K., Stein M.B., Stephan K.E., Van den Bergh O., Van Diest I., von Leupoldt A., Paulus M.P.; Interoception Summit 2016 participants. Interoception and mental health: a roadmap. Biol Psychiatry Cogn Neurosci Neuroimaging 2018; 3(6): 501–513, https://doi.org/10.1016/j.bpsc.2017.12.004.
  26. Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., Weiskopf N., Blefari M.L., Rana M., Oblak E., Birbaumer N., Sulzer J. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 2017; 18(2): 86–100, https://doi.org/10.1038/nrn.2016.164.
  27. Ganzer P.D., Sharma G. Opportunities and challenges for developing closed-loop bioelectronic medicines. Neural Regen Res 2019; 14(1): 46–50, https://doi.org/10.4103/1673-5374.243697.
Fedotchev A.I., Parin S.B., Savchuk L.V., Polevaya S.A. Mechanisms of Light and Music Stimulation Controlled by a Person’s Own Brain and Heart Biopotentials or Those of Another Person. Sovremennye tehnologii v medicine 2020; 12(4): 23, https://doi.org/10.17691/stm2020.12.4.03


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg