Today: May 26, 2024
Last update: May 3, 2024
Optimization of Spondylosynthesis for Certain Thoracolumbar Burst Fractures

Optimization of Spondylosynthesis for Certain Thoracolumbar Burst Fractures

Likhachev S.V., Arsenievich V.B., Ostrovskiy V.V., Shulga A.E., Zaretskov A.V., Ivanov D.V., Dol A.V., Donnik A.M., Zaretskov V.V.
Key words: spine trauma; thoracolumbar transitional vertebra; finite element method; intermediate transpedicular fixation; anterior column support.
2020, volume 12, issue 4, page 30.

Full text

html pdf

Intermediate transpedicular fixation, i.e. additional insertion of transpedicular screws into the injured vertebrae, is an improvement to the most popular surgical intervention for spinal injuries, currently gaining widespread use in clinical practice. Unilateral insertion of transpedicular screws into the injured vertebrae allows combining the advantages of intermediate transpedicular fixation with the possibility to perform anterior column support without remounting the transpedicular system.

The aim of the study was to use biomechanical computer modeling for evaluating the stability of intermediate transpedicular fixation components, which allow performing anterior column support if necessary.

Materials and Methods. DICOM files obtained during CT scan of a patient with intermediate thoracolumbar spine injury and the ANSYS software were used. Stability of the transpedicular system and supportability of the complementary Mesh implant installed with unilateral intermediate transpedicular screws were evaluated using computer modeling based on the finite element method.

Results. The values of stress and displacement fields for spine–hardware systems with various arrangements have been obtained. The maximum loads exceeding bone tissue strength (153–161 MPa) were registered for standard 4-screw system (190 MPa) when modeling the load equivalent for walking and falling from a standing position. The use of the proposed fixation system arrangement supplemented with intermediate screws allows obtaining loads in the spine–hardware system not exceeding these thresholds. Complementary eccentric Mesh implant enhances fixation stability of the transpedicular system with intermediate screws.

Conclusion. The results show the high degree of mechanical stability of the proposed hardware arrangement and its potential efficacy for thoracolumbar transitional vertebra stabilization.

  1. Ankomah F., Ikpeze T., Mesfin A. The top 50 most-cited articles on thoracolumbar fractures. World Neurosurg 2018; 118: e699–e706,
  2. Zaretskov V.V., Arsenievich V.B., Likhachev S.V., Shul’ga A.E., Stepukhovich S.V., Bogomolova N.V. A clinical case study of long-term injury of the thoracic and lumbar spine. Ortopediya, travmatologiya i vosstanovitelnaya hirurgiya detskogo vozrasta 2016; 4(2): 61–66,
  3. Shul’ga A.E., Norkin I.A., Ninel’ V.G., Puchin’yan D.M., Zaretskov V.V., Korshunova G.A., Ostrovskii V.V., Smol’kin A.A. Contemporary views on the pathogenesis of trauma of the spinal cord and peripheral nerve trunks. Neurosci Behav Physi 2015; 45(7): 811,
  4. Deqing L., Kejian L., Teng L., Weitao Z., Dasheng L. Does the fracture fragment at the anterior column in thoracolumbar burst fractures get enough attention? Medicine (Baltimore) 2017; 96(6): e5936,
  5. Alanay A., Acaroglu E., Yazici M., Oznur A., Surat A. Short-segment pedicle instrumentation of thoracolumbar burst fractures: does transpedicular intracorporeal grafting prevent early failure. Spine (Phila Pa 1976) 2001; 26(2): 213–217,
  6. Aono H., Ishii K., Tobimatsu H., Nagamoto Y., Takenaka S., Furuya M., Chiaki H., Iwasaki M. Temporary short-segment pedicle screw fixation for thoracolumbar burst fractures: comparative study with or without vertebroplasty. Spine J 2017; 17(8): 1113–1119,
  7. Wei F.X., Liu S.Y., Liang C.X., Li H.M., Long H.Q., Yu B.S., Chen B.L., Chen K.B. Transpedicular fixation in management of thoracolumbar burst fractures: monosegmental fixation versus short-segment instrumentation. Spine (Phila Pa 1976) 2010; 35(15): E714–E720,
  8. Likhachev S.V., Zaretskov V.V., Shulga A.E., Gramma S.A., Shchanitsyn I.N., Bazhanov S.P., Zaretskov A.V., Donnik A.M. Injuries to the thoracolumbar junction: bibliometric analysis of English-language literature. Hirurgia pozvonocnika 2018; 15(4): 52–69,
  9. De Iure F., Lofrese G., De Bonis P., Cultrera F., Cappuccio M., Battisti S. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure. Spine J 2018; 18(6): 1005–1013,
  10. McLain R.F., Sparling E., Benson D.R. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am 1993; 75(2): 162–167,
  11. Liao J.C., Fan K.F. Posterior short-segment fixation in thoracolumbar unstable burst fractures — transpedicular grafting or six-screw construct? Clin Neurol Neurosurg 2017; 153: 56–63,
  12. Likhachev S.V., Zaretskov V.V., Arsenievich V.B., Shul’ga A.E., Shchanitsyn I.N., Skripachenko K.K. Biomechanical aspects of circular spondylosynthesis of transitional thoracolumbar spine. Saratovskij nauchno-medicinskij zhurnal 2018; 14(3): 560–566.
  13. Ahsan M.K., Mamun A.A., Zahangiri Z., Awwal M.A., Khan S.I., Zaman N., Haque M.H. Short-segment versus long-segment stabilization for unstable thoracolumbar junction burst fractures. Mymensingh Med J 2017; 26(4): 762–774.
  14. Tian J.W., Wang L., Xia T., Liu C.Y., Zhao Q.H., Dong S.H. Posterior short-segmental fixation combined with intermediate screws vs conventional intersegmental fixation for monosegmental thoracolumbar fractures. Orthopedics 2011; 34(8): e389–e396,
  15. Ye C., Luo Z., Yu X., Liu H., Zhang B., Dai M. Comparing the efficacy of short-segment pedicle screw instrumentation with and without intermediate screws for treating unstable thoracolumbar fractures. Medicine (Baltimore) 2017; 96(34): e7893,
  16. Dai L.Y., Jiang S.D., Wang X.Y., Jiang L.S. A review of the management of thoracolumbar burst fractures. Surg Neurol 2007; 67(3): 221–231,
  17. Babkina T.A., Savello V.E. Significance of conventional radiography and computed tomography for assessment of postoperative spine stability in patients with thoraco-lumbar spinal trauma. Radiologiya — praktika 2013; 4: 6–14.
  18. Wang X.Y., Dai L.Y., Xu H.Z., Chi Y.L. Kyphosis recurrence after posterior short-segment fixation in thoracolumbar burst fractures. J Neurosurg Spine 2008; 8(3): 246–254,
  19. Herrera A., Ibarz E., Cegoñino J., Lobo-Escolar A., Puértolas S., López E., Mateo J., Gracia L. Applications of finite element simulation in orthopedic and trauma surgery. World J Orthop 2012; 3(4): 25–41,
  20. Donnik A.M., Kirillova I.V., Kossovich L.Yu., Zaretskov V.V., Lykhachev S.V., Norkin I.A. Biomechanical modeling of reconstructive intervention on the thoracolumbar transition. AIP Conference Proceedings 1959; 090002(2018),
  21. Mlyavykh S.G., Bokov A.E., Yashin K.S., Karyakin N.N., Anderson D.G. Pedicle-lengthening osteotomy for the treatment of lumbar spinal stenosis: pre-clinical study of novel orthopedic devices. Sovremennye tehnologii v medicine 2018; 10(2): 37–46,
  22. Donnik A.M., Ivanov D.V., Kossovich L.Yu., Levchenko K.K., Kireev S.I., Morozov K.M., Ostrovsky N.V., Zaretskov V.V., Likhachev S.V. Creation of three-dimensional solid-state models of a spine with transpedicular fixation using a specialized software. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika 2019; 19(4): 424–438,
  23. Donnik A.M., Ivanov D.V., Kireev S.I., Kossovich L.Yu., Ostrovsky N.V., Norkin I.A., Levchenko K.K., Likhachev S.V. Extracting clinically relevant data from biomechanical modeling of surgical treatment options for spinal injury in damaged vertebrae Th10, Th11. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika 2019; 19(4): 439–453,
  24. Wuertinger C., Annes R.D.À., Hitzl W., Siepe C.J. Motion preservation following total lumbar disc replacement at the lumbosacral junction: a prospective long-term clinical and radiographic investigation. Spine J 2018; 18(1): 72–80,
  25. Havaldar R., Pilli S.C., Putti B.B. Insights into the effects of tensile and compressive loadings on human femur bone. Adv Biomed Res 2014; 3: 101,
  26. Mirzaali M.J., Schwiedrzik J.J., Thaiwichai S., Best J.P., Michler J., Zysset P.K., Wolfram U. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone 2016; 93: 196–211,
  27. Jang H.D., Bang C., Lee J.C., Soh J.W., Choi S.W., Cho H.K., Shin B.J. Risk factor analysis for predicting vertebral body re-collapse after posterior instrumented fusion in thoracolumbar burst fracture. Spine J 2018; 18(2): 285–293,
  28. Dobran M., Nasi D., Brunozzi D., di Somma L., Gladi M., Iacoangeli M., Scerrati M. Treatment of unstable thoracolumbar junction fractures: short-segment pedicle fixation with inclusion of the fracture level versus long-segment instrumentation. Acta Neurochir (Wien) 2016; 158(10): 1883–1889,
  29. Elmasry S., Asfour S., Travascio F. Effectiveness of pedicle screw inclusion at the fracture level in short-segment fixation constructs for the treatment of thoracolumbar burst fractures: a computational biomechanics analysis. Comput Methods Biomech Biomed Engin 2017; 20(13): 1412–1420,
  30. Sun C., Guan G., Liu X., Zhang H., Wang B. Comparison of short-segment pedicle fixation with versus without inclusion of the fracture level in the treatment of mild thoracolumbar burst fractures. Int J Surg 2016; 36(Pt A): 352–357,
  31. Tong M.J., Tang Q., Wang C.G., Xiang G.H., Chen Q., Xu H.Z., Tian N.F. Efficacy of using intermediate screws in short-segment fixation for thoracolumbar fractures: a meta-analysis of randomized controlled trials. World Neurosurg 2018; 110: e271–e280,
  32. Usikov V.D. Rukovodstvo po transpedikulyarnomu osteosintezu pozvonochnika [Transpedicular spine osteosynthesis guideline]. Saint Petersburg: Gippokrat; 2006; 176 p.
  33. Mei L., Sang W., Chen Z., Lou C., Zheng L., Jin K., Huang W., He D. Titanium mesh bone grafting combined with pedicle screw internal fixation for treatment of Ku[Combining Diaeresis]mmell disease with cord compression. Medicine (Baltimore) 2018; 97(36): e12183,
  34. Cho Y. Corpectomy and circumferential fusion for advanced thoracolumbar Kümmell’s disease. Musculoskelet Surg 2017; 101(3): 269–274,
  35. Wang S.J., Liu X.M., Zhao W.D., Wu D.S. Titanium mesh cage fracture after lumbar reconstruction surgery: a case report and literature review. Int J Clin Exp Med 2015; 8(4): 5559–5564.
  36. Shul’ga A.E., Zaretskov V.V., Korshunova G.A., Smolkin A.A., Sumin D.Yu. Surgical treatment of gross posttraumatic deformations in thoracic spine. Ortopediya, travmatologiya i vosstanovitelnaya hirurgiya detskogo vozrasta 2017; 5(3): 80–86,
Likhachev S.V., Arsenievich V.B., Ostrovskiy V.V., Shulga A.E., Zaretskov A.V., Ivanov D.V., Dol A.V., Donnik A.M., Zaretskov V.V. Optimization of Spondylosynthesis for Certain Thoracolumbar Burst Fractures. Sovremennye tehnologii v medicine 2020; 12(4): 30,

Journal in Databases