Today: Jun 26, 2024
Last update: Jun 24, 2024
 Spectrum of <i>PRSS1</i>, <i>SPINK1</i>, <i>CTRC</i>, <i>CFTR</i>, and <i>CPA1</i> Gene Variants in Chronic Pancreatitis Patients in Russia

Spectrum of PRSS1, SPINK1, CTRC, CFTR, and CPA1 Gene Variants in Chronic Pancreatitis Patients in Russia

Litvinova M.M., Khafizov K.F., Speranskaya A.S., Matsvay A.D., Asanov A.Yu., Nikolskaya K.A., Vinokurova L.V., Dubtsova E.A., Ipatova M.G., Mukhina T.F., Karnaushkina M.A., Bordin D.S.
Key words: chronic pancreatitis; mutations; gene variants; PRSS1; SPINK1; CTRC; CFTR; CPA1; genetic risk factors; hereditary pancreatitis; idiopathic pancreatitis; Russian population.
2023, volume 15, issue 2, page 60.

Full text

html pdf

The aim of the study was to define the spectrum of genetic risk factors of chronic pancreatitis (CP) development in patients living in the European part of the Russian Federation.

Materials and Methods. The study group included 105 patients with CP, with the age of the disease onset under 40 years old (the average age of onset was 26.9 years). The control group consisted of 76 persons without clinical signs of pancreatitis. The diagnosis of chronic pancreatitis in patients was made on the basis of clinical manifestations and the results of laboratory and instrumental investigations. Genetic examination of patients was conducted using the next-generation sequencing (NGS) technology and included targeted sequencing of all exons and exon-intron boundaries of the PRSS1, SPINK1, CTRC, CFTR, and CPA1 genes. The genotyping of the rs61734659 locus of the PRSS2 gene was also conducted.

Results. Genetic risk factors of the CP development were found in 61% of patients. Pathogenic and likely-pathogenic variants associated with the risk of CP development were identified in the following genes: CTRC (37.1% of patients), CFTR (18.1%), SPINK1 (8.6%), PRSS1 (8.6%), and CPA1 (6.7%). The frequent gene variants in Russian patients with CP were as follows: CTRC gene — c.180C>T (rs497078), c.760C>T (rs121909293), c.738_761del24 (rs746224507); cumulative odds ratio (OR) for all risk alleles was 1.848 (95% CI: 1.054–3.243); CFTR gene — c.3485G>T (rs1800120), c.1521_1523delCTT (p.Phe508del, rs113993960), and c.650A>G (rs121909046); OR=2.432 (95% CI: 1.066–5.553). In the SPINK1, PRSS1, and CPA1 genes, pathogenic variants were found only in the group of patients with CP. The frequent variants of the SPINK1 gene include c.101A>G (p.Asn34Ser, rs17107315) and c.194+2T>C (rs148954387); of the PRSS1 gene — c.86A>T (p.Asn29Ile, rs111033566); of the CPA1 gene — c.586-30C>T (rs782335525) and c.696+23_696+24delGG. The OR for the CP development for the c.180TT genotype (rs497078) CTRC according to the recessive model (TT vs. CT+CC) was 7.05 (95% CI: 0.86–263, p=0.011). In the CTRC gene, the variant c.493+49G>C (rs6679763) appeared to be benign, the c.493+51C>A (rs10803384) variant was frequently detected among both the diseased and healthy persons and did not demonstrate a protective effect. The protective factor c.571G>A (p.Gly191Arg, rs61734659) of the PRSS2 gene was detected only in the group of healthy individuals and confirmed its protective role. 12.4% of the patients with CP had risk factors in 2 or 3 genes.

Conclusion. Sequencing of the coding regions of the PRSS1, SPINK1, CTRC, CFTR, and CPA1 genes allowed to identify genetic risk factors of the CP development in 61% of cases. Determining the genetic cause of CP helps to predict the disease course, perform preventive measures in the proband’s relatives, and facilitate a personalized treatment of the patient in future.

  1. Meyer A., Coffey M.J., Oliver M.R., Ooi C.Y. Contrasts and comparisons between childhood and adult onset acute pancreatitis. Pancreatology 2013; 13(4): 429–435,
  2. Machicado J.D., Yadav D. Epidemiology of recurrent acute and chronic pancreatitis: similarities and differences. Dig Dis Sci 2017; 62(7): 1683–1691,
  3. Beyer G., Habtezion A., Werner J., Lerch M.M., Mayerle J. Chronic pancreatitis. Lancet 2020; 396(10249): 499–512,
  4. Litvinova M.M., Khafizov K.F., Shipulin G.A., Ayginin A.A., Vinokurova L.V., Nikolskaya K.A., Dubtsova E.A., Bordin D.S., Asanov A.Yu. Genetic factors of the development of chronic pancreatitis. Voprosy prakticeskoj pediatrii 2018; 13(3): 29–40,
  5. Whitcomb D.C.; North American Pancreatitis Study Group. Pancreatitis: TIGAR-O Version 2 Risk/Etiology Checklist with topic reviews, updates, and use primers. Clin Transl Gastroenterol 2019; 10(6): e00027,
  6. Schmieder R., Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011; 27(6): 863–864,
  7. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20(9): 1297–1303,
  8. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25(16): 2078–2079,
  9. McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. The Ensembl variant effect predictor. Genome Biol 2016; 17(1): 122,
  10. Milne I., Stephen G., Bayer M., Cock P.J., Pritchard L., Cardle L., Shaw P.D., Marshall D. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 2013; 14(2): 193–202,
  11. R Foundation. The R project for statistical computing. Vienna; 2019. URL:
  12. Litvinova M.M., Khafizov K.F., Speranskaya A.S., Matsvay A.D., Nikolskaya K.A., Vinokurova L.V., Dubtsova E.A., Muhina T.F., Khavkin A.I., Bordin D.S. Spectrum of CFTR gene mutations in patients with chronic pancreatitis in Russia. Voprosy detskoj dietologii 2020; 18(3): 5–18,
  13. Machicado J.D., Dudekula A., Tang G., Xu H., Wu B.U., Forsmark C.E., Yadav D. Period prevalence of chronic pancreatitis diagnosis from 2001–2013 in the commercially insured population of the United States. Pancreatology 2019; 19(6): 813–818,
  14. Saito N., Suzuki M., Sakurai Y., Nakano S., Naritaka N., Minowa K., Sai J.K., Shimizu T. Genetic analysis of Japanese children with acute recurrent and chronic pancreatitis. J Pediatr Gastroenterol Nutr 2016; 63(4): 431–436,
  15. Xiao Y., Yuan W., Yu B., Guo Y., Xu X., Wang X., Yu Y., Yu Y., Gong B., Xu C. Targeted gene next-generation sequencing in Chinese children with chronic pancreatitis and acute recurrent pancreatitis. J Pediatr 2017; 191: 158–163.e3,
  16. Párniczky A., Mosztbacher D., Zsoldos F., Tóth A., Lásztity N., Hegyi P.; Hungarian Pancreatic Study Group and the International Association of Pancreatology. Analysis of pediatric pancreatitis (APPLE trial): pre-study protocol of a multinational prospective clinical trial. Digestion 2016; 93(2): 105–110,
  17. Zou W.B., Tang X.Y., Zhou D.Z., Qian Y.Y., Hu L.H., Yu F.F., Yu D., Wu H., Deng S.J., Lin J.H., Zhao A.J., Zhao Z.H., Wu H.Y., Zhu J.H., Qian W., Wang L., Xin L., Wang M.J., Wang L.J., Fang X., He L., Masson E., Cooper D.N., Férec C., Li Z.S., Chen J.M., Liao Z. SPINK1, PRSS1, CTRC, and CFTR genotypes influence disease onset and clinical outcomes in chronic pancreatitis. Clin Transl Gastroenterol 2018; 9(11): 204,
  18. Mayerle J., Sendler M., Hegyi E., Beyer G., Lerch M.M., Sahin-Tóth M. Genetics, cell biology, and pathophysiology of pancreatitis. Gastroenterology 2019; 156(7): 1951–1968.e1,
  19. LaRusch J., Lozano-Leon A., Stello K., Moore A., Muddana V., O’Connell M., Diergaarde B., Yadav D., Whitcomb D.C. The common chymotrypsinogen C (CTRC) variant G60G (C.180T) increases risk of chronic pancreatitis but not recurrent acute pancreatitis in a North American population. Clin Transl Gastroenterol 2015; 6(1): e68,
  20. Rosendahl J., Witt H., Szmola R., Bhatia E., Ozsvári B., Landt O., Schulz H.U., Gress T.M., Pfützer R., Löhr M., Kovacs P., Blüher M., Stumvoll M., Choudhuri G., Hegyi P., te Morsche R.H.M., Drenth J.P., Truninger K., Macek M. Jr., Puhl G., Witt U., Schmidt H., Büning C., Ockenga J., Kage A., Groneberg D.A., Nickel R., Berg T., Wiedenmann B., Bödeker H., Keim V., Mössner J., Teich N., Sahin-Tóth M. Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 2008; 40(1): 78–82,
  21. Masamune A., Kikuta K., Hamada S., Nakano E., Kume K., Inui A., Shimizu T., Takeyama Y., Nio M., Shimosegawa T. Nationwide survey of hereditary pancreatitis in Japan. J Gastroenterol 2018; 53(1): 152–160,
  22. Németh B.C., Demcsák A., Geisz A., Sahin-Tóth M. Misfolding-induced chronic pancreatitis in CPA1 N256K mutant mice is unaffected by global deletion of Ddit3/Chop. Sci Rep 2022; 12(1): 6357,
  23. Masson E., Chen J.M., Audrézet M.P., Cooper D.N., Férec C. A conservative assessment of the major genetic causes of idiopathic chronic pancreatitis: data from a comprehensive analysis of PRSS1, SPINK1, CTRC and CFTR genes in 253 young French patients. PLoS One 2013; 8(8): e73522,
  24. Masamune A. Genetics of pancreatitis: the 2014 update. Tohoku J Exp Med 2014; 232(2): 69–77,
  25. Hwang W.J., Lim H.H., Kim Y.M., Chang M.Y., Kil H.R., Kim J.Y., Song W.J., Levy H.L., Kim S.Z. Pancreatic involvement in patients with inborn errors of metabolism. Orphanet J Rare Dis 2021; 16(1): 37,
  26. Suzuki M., Minowa K., Nakano S., Isayama H., Shimizu T. Genetic abnormalities in pancreatitis: an update on diagnosis, clinical features, and treatment. Diagnostics (Basel) 2020; 11(1): 31,
  27. Carrion A., Borowitz D.S., Freedman S.D., Siracusa C.M., Goralski J.L., Hadjiliadis D., Srinivasan S., Stokes D.C. Reduction of recurrence risk of pancreatitis in cystic fibrosis with ivacaftor: case series. J Pediatr Gastroenterol Nutr 2018; 66(3): 451–454,
Litvinova M.M., Khafizov K.F., Speranskaya A.S., Matsvay A.D., Asanov A.Yu., Nikolskaya K.A., Vinokurova L.V., Dubtsova E.A., Ipatova M.G., Mukhina T.F., Karnaushkina M.A., Bordin D.S. Spectrum of PRSS1, SPINK1, CTRC, CFTR, and CPA1 Gene Variants in Chronic Pancreatitis Patients in Russia. Sovremennye tehnologii v medicine 2023; 15(2): 60,

Journal in Databases