Сегодня: 29.03.2024
RU / EN
Последнее обновление: 01.03.2024
Маркеры состояния экстрацеллюлярного матрикса и методы их исследования (обзор)

Маркеры состояния экстрацеллюлярного матрикса и методы их исследования (обзор)

Е.В. Туш, Т.И. Елисеева, О.В. Халецкая, С.В. Красильникова, Д.Ю. Овсянников, Т.Е. Потемина, С.К. Игнатов
Ключевые слова: экстрацеллюлярный матрикс; ремоделирование матрикса; биомаркеры; коллаген; металлопротеиназы.
2019, том 11, номер 2, стр. 133.

Полный текст статьи

html pdf
3879
3126

Экстрацеллюлярный (внеклеточный) матрикс (ЭЦМ) представляет собой сложную сетчатую структуру, состоящую преимущественно из белков и углеводов, и рассматривается в настоящее время как ключевой регулятор организации тканей и гомеостаза. В каждом органе состав ЭЦМ различен, включает разнообразные фибриллярные компоненты, такие как коллагены, фибронектин и эластин, и нефибриллярные молекулы — протеогликаны, гиалуронан и гликопротеины, матриксные белки. ЭЦМ является активной структурой, в которой постоянно происходят процессы синтеза de novo структурных компонентов и параллельно — их деградации, осуществляемой преимущественно с участием ферментов, в том числе матриксных металлопротеиназ. Синтез и деградация компонентов матрикса находятся под сложным регуляторным влиянием различных медиаторов и цитокинов, метаболических, эпигенетических и средовых воздействий. В настоящее время накоплено большое количество доказательств, что изменения ЭЦМ играют важную роль при различных патологических состояниях. Этим обусловлен интерес к поиску маркеров, отражающих состояние ЭЦМ в разных органах и тканях как в физиологических условиях, так и при различных вариантах патологии. В последние годы многие из молекул ЭЦМ рассматриваются в качестве мишеней для диагностики, прогнозирования и лечения заболеваний. В данном обзоре мы систематизировали основные описанные в настоящий момент маркеры состояния ЭЦМ и используемые методы их определения.

  1. Pozzi A., Yurchenco P.D., Iozzo R.V. The nature and biology of basement membranes. Matrix Biol 2017; 57–58: 1–11, https://doi.org/10.1016/j.matbio.2016.12.009.
  2. Mouw J.K., Ou G., Weaver V.M. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014; 15(12): 771–785, https://doi.org/10.1038/nrm3902.
  3. Eliseeva Т.I., Tush Е.V., Krasilnikova S.V., Kuznetsova S.V., Larin R.A., Kubysheva N.I., Khaletskaya О.V., Potemina T.E., Ryazantsev S.V., Ignatov S.K. Metabolism of the extracellular matrix in bronchial asthma (review). Sovremennye tehnologii v medicine 2018; 10(4): 220–234, https://doi.org/10.17691/stm2018.10.4.25.
  4. Boulet L.P. Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 2018; 24(1): 56–62, https://doi.org/10.1097/mcp.0000000000000441.
  5. Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786–801, https://doi.org/10.1038/nrm3904.
  6. Liu Y.D., Sun X., Zhang Y., Wu H.J., Wang H., Yang R. Protocatechuic acid inhibits TGF-beta1-induced proliferation and migration of human airway smooth muscle cells. J Pharmacol Sci 2019; 139(1): 9–14, https://doi.org/10.1016/j.jphs.2018.10.011.
  7. Hellmund K.S., Koksch B. Self-assembling peptides as extracellular matrix mimics to influence stem cell’s fate. Front Chem 2019; 7: 172, https://doi.org/10.3389/fchem.2019.00172.
  8. Hsu C.W., Wang J.C., Liao W.I., Chien W.C., Chung C.H., Tsao C.H., Wu Y.F., Liao M.T., Tsai S.H. Association between malignancies and Marfan syndrome: a population-based, nested case-control study in Taiwan. BMJ Open 2017; 7(10): e017243, https://doi.org/10.1136/bmjopen-2017-017243.
  9. Cox T.R., Erler J.T. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4(2): 165–178, https://doi.org/10.1242/dmm.004077.
  10. Kisling A., Lust R.M., Katwa L.C. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci 2019, https://doi.org/10.1016/j.lfs.2019.04.042.
  11. Zuo H., Cattani-Cavalieri I., Valenca S.S., Musheshe N., Schmidt M. Function of cAMP scaffolds in obstructive lung disease: Focus on epithelial-to-mesenchymal transition and oxidative stress. Br J Pharmacol 2019, https://doi.org/10.1111/bph.14605.
  12. Gunay M., Dogru M., Celik G., Gunay B.O. Swept-source optical coherence tomography analysis in asthmatic children under inhaled corticosteroid therapy. Cutan Ocul Toxicol 2019; 38(2): 131–135, https://doi.org/10.1080/15569527.2018.1539009.
  13. Ito J.T., Lourenco J.D., Righetti R.F., Tiberio I., Prado C.M., Lopes F. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells 2019; 8(4): 342, https://doi.org/10.3390/cells8040342.
  14. Qi Y., Fang L., Stolz D., Tamm M., Roth M. Long acting β2-agonist’s activation of cyclic AMP cannot halt ongoing mitogenic stimulation in airway smooth muscle cells. Pulm Pharmacol Ther 2019; 56: 20–28, https://doi.org/10.1016/j.pupt.2019.03.005.
  15. Michalek I.M., Lelen-Kaminska K., Caetano Dos Santos F.L. Peptides stimulating synthesis of extracellular matrix used in anti-ageing cosmetics: are they clinically tested? A systematic review of the literature. Australas J Dermatol 2019, https://doi.org/10.1111/ajd.13036.
  16. Awasthi N., Mikels-Vigdal A.J., Stefanutti E., Schwarz M.A., Monahan S., Smith V., Schwarz R.E. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer. J Cell Mol Med 2019; 23(6): 3878–3887, https://doi.org/10.1111/jcmm.14242.
  17. Eliseeva T.I., Krasilnikova S.V., Geppe N.A., Babaev S.Y., Tush E.V., Khaletskaya O.V., Ovsyannikov D.Y., Balabolkin I.I., Ignatov S.K., Kubysheva N.I. Effect of nasal obstructive disorders on sinonasal symptoms in children with different levels of bronchial asthma control. Can Respir J 2018; 2018: 4835823, https://doi.org/10.1155/2018/4835823.
  18. Eliseeva Т.I., Krasilnikova S.V., Babaev S.Y., Novozhilov A.A., Ovsyannikov D.Y., Ignatov S.K., Kubysheva N.I., Shakhov A.V. Dependence of anterior active rhinomanometry indices on nasal obstructive disorders in children with atopic bronchial asthma complicated by nasal symptoms. Biomed Res Int 2018; 2018: 1869613, https://doi.org/10.1155/2018/1869613.
  19. Krasilnikova S.V., Eliseeva T.I., Popov K.S., Tush E.V., Khaletskaya O.V., Ovsyannikov D.Y., Balabolkin I.I., Shakhov A.V., Prahov A.V. Multimorbidity of upper respiratory tract pathology in children with bronchial asthma. Pediatria 2018; 97(2): 19–26, https://doi.org/10.24110/0031-403x-2018-97-2-19-26.
  20. Krasilnikova S.V., Eliseeva Т.I., Shakhov А.V., Geppe N.A. Capabilities of nasal videoendoscopy in diagnostics of pharyngeal tonsil condition in children with bronchial asthma. Sovremennye tehnologii v medicine 2016; 8(3): 126–136, https://doi.org/10.17691/stm2016.8.3.15.
  21. Krasilnikova S.V., Eliseeva Т.I., Shakhov А.V., Prakhov А.V., Balabolkin I.I. Video endoscopic method of estimation state of nasal and pharyngonasal cavity in children with bronchial asthma. Sovremennye tehnologii v medicine 2012; (3): 41–45.
  22. Krasil’nikova S.V., Eliseyeva T.I., Remizova Т.М., Soodaeva S.K., Shakhov A.V., Prakhov A.V. Nose and paranasal sinuses pathology in children with bronchial asthma. Pul’monologiya 2012; (4): 45–49, https://doi.org/10.18093/0869-0189-2012-0-4-45-49.
  23. Bousquet J., Anto J.M., Wickman M., Keil T., Valenta R., Haahtela T., Lodrup Carlsen K., van Hage M., Akdis C., Bachert C., Akdis M., Auffray C., Annesi-Maesano I., Bindslev-Jensen C., Cambon-Thomsen A., Carlsen K.H., Chatzi L., Forastiere F., Garcia-Aymerich J., Gehrig U., Guerra S., Heinrich J., Koppelman G.H., Kowalski M.L., Lambrecht B., Lupinek C., Maier D., Melen E., Momas I., Palkonen S., Pinart M., Postma D., Siroux V., Smit H.A., Sunyer J., Wright J., Zuberbier T., Arshad S.H., Nadif R., Thijs C., Andersson N., Asarnoj A., Ballardini N., Ballereau S., Bedbrook A., Benet M., Bergstrom A., Brunekreef B., Burte E., Calderon M., De Carlo G., Demoly P., Eller E., Fantini M.P., Hammad H., Hohman C., Just J., Kerkhof M., Kogevinas M., Kull I., Lau S., Lemonnier N., Mommers M., Nawijn M., Neubauer A., Oddie S., Pellet J., Pin I., Porta D., Saes Y., Skrindo I., Tischer C.G., Torrent M., von Hertzen L. Are allergic multimorbidities and IgE polysensitization associated with the persistence or re-occurrence of foetal type 2 signalling? The MeDALL hypothesis. Allergy 2015; 70(9): 1062–1078, https://doi.org/10.1111/all.12637.
  24. Spiropoulou A., Zareifopoulos N., Bellou A., Spiropoulos K., Tsalikis L. Review of the association between periodontitis and chronic obstructive pulmonary disease in smokers. Monaldi Arch Chest Dis 2019; 89(1), https://doi.org/10.4081/monaldi.2019.1018.
  25. Zhang S.L., Du X., Chen Y.Q., Tan Y.S., Liu L. Potential medication treatment according to pathological mechanisms in abdominal aortic aneurysm. J Cardiovasc Pharmacol 2018; 71(1): 46–57, https://doi.org/10.1097/fjc.0000000000000540.
  26. Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0-18 years. Osteoporos Int 2014; 25(2): 729–736, https://doi.org/10.1007/s00198-013-2485-4.
  27. Eliseeva T.I., Geppe N.A., Tush E.V., Khaletskaya O.V., Balabolkin I.I., Bulgakova V.A., Kubysheva N.I., Ignatov S.K. Body height of children with bronchial asthma of various severities. Can Respir J 2017; 2017: 8761404, https://doi.org/10.1155/2017/8761404.
  28. Eliseeva Т.I., Geppe N.A., Ignatov S.K., Soodaeva S.K., Tush Е.V., Khaletskaya O.V., Potemina T.E., Malakhov A.B., Kubysheva N.I., Solovyov V.A. Relative body mass index as a new tool for nutritional status assessment in children and adolescents with bronchial asthma. Sovremennye tehnologii v medicine 2017; 9(1): 135–148, https://doi.org/10.17691/stm2017.9.1.18.
  29. Genovese F., Karsdal M.A. Protein degradation fragments as diagnostic and prognostic biomarkers of connective tissue diseases: understanding the extracellular matrix message and implication for current and future serological biomarkers. Expert Rev Proteomics 2016; 13(2): 213–225, https://doi.org/10.1586/14789450.2016.1134327.
  30. McKleroy W., Lee T.H., Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 304(11): L709–L721, https://doi.org/10.1152/ajplung.00418.2012.
  31. Chalikias G.K., Tziakas D.N. Biomarkers of the extracellular matrix and of collagen fragments. Clin Chim Acta 2015; 443: 39–47, https://doi.org/10.1016/j.cca.2014.06.028.
  32. Woitge H.W., Seibel M.J. Markers of bone and cartilage turnover. Exp Clin Endocrinol Diabetes 2017; 125(7): 454–469, https://doi.org/10.1055/s-0043-106438.
  33. Juhl P., Bay-Jensen A.C., Karsdal M., Siebuhr A.S., Franchimont N., Chavez J. Serum biomarkers of collagen turnover as potential diagnostic tools in diffuse systemic sclerosis: a cross-sectional study. PLoS One 2018; 13(12): e0207324, https://doi.org/10.1371/journal.pone.0207324.
  34. Luo Y., He Y., Reker D., Gudmann N.S., Henriksen K., Simonsen O., Ladel C., Michaelis M., Mobasheri A., Karsdal M., Bay-Jensen A.C. A novel high sensitivity type II collagen blood-based biomarker, PRO-C2, for assessment of cartilage formation. Int J Mol Sci 2018; 19(11): 3485, https://doi.org/10.3390/ijms19113485.
  35. Nielsen M.J., Veidal S.S., Karsdal M.A., Orsnes-Leeming D.J., Vainer B., Gardner S.D., Hamatake R., Goodman Z.D., Schuppan D., Patel K. Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int 2015; 35(2): 429–437, https://doi.org/10.1111/liv.12700.
  36. Kim S.G., Lee D.S., Lee S., Jang J.H. Osteocalcin/fibronectin-functionalized collagen matrices for bone tissue engineering. J Biomed Mater Res A 2015; 103(6): 2133–2140, https://doi.org/10.1002/jbm.a.35351.
  37. Abdul Roda M., Xu X., Abdalla T.H., Sadik M., Szul T., Bratcher P.E., Viera L., Solomon G.M., Wells J.M., McNicholas C.M., Redegeld F.A., Folkerts G., Blalock J.E., Gaggar A. Proline-glycine-proline peptides are critical in the development of smoke-induced emphysema. Am J Respir Cell Mol Biol 2019, https://doi.org/10.1165/rcmb.2018-0216oc.
  38. Bondarenko N.S., Shneiderman A.N., Guseva A.A., Umarova B.A. Prolyl-glycyl-proline (PGP) peptide prevents an increase in vascular permeability in inflammation. Acta Naturae 2017; 9(1): 52–55, https://doi.org/10.32607/20758251-2017-9-1-52-55.
  39. Ashmarin I.P., Karazeeva E.P. Search for evolutionary ancient, relict regulatory peptides. J Evol Biochem Phys2007; 43(1): 123–125, https://doi.org/10.1134/s0022093007010139.
  40. DeLeon-Pennell K.Y., Meschiari C.A., Jung M., Lindsey M.L. Matrix metalloproteinases in myocardial infarction and heart failure. Prog Mol Biol Transl Sci 2017; 147: 75–100, https://doi.org/10.1016/bs.pmbts.2017.02.001.
  41. Lindsey M.L., Iyer R.P., Zamilpa R., Yabluchanskiy A., DeLeon-Pennell K.Y., Hall M.E., Kaplan A., Zouein F.A., Bratton D., Flynn E.R., Cannon P.L., Tian Y., Jin Y.F., Lange R.A., Tokmina-Roszyk D., Fields G.B., de Castro Bras L.E. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol 2015; 66(12): 1364–1374, https://doi.org/10.1016/j.jacc.2015.07.035.
  42. Palmieri D., Camardella L., Ulivi V., Guasco G., Manduca P. Trimer carboxyl propeptide of collagen I produced by mature osteoblasts is chemotactic for endothelial cells. J Biol Chem 2000; 275(42): 32658–32663, https://doi.org/10.1074/jbc.m002698200.
  43. Aikio M., Alahuhta I., Nurmenniemi S., Suojanen J., Palovuori R., Teppo S., Sorsa T., Lopez-Otin C., Pihlajaniemi T., Salo T., Heljasvaara R., Nyberg P. Arresten, a collagen-derived angiogenesis inhibitor, suppresses invasion of squamous cell carcinoma. PLoS One 2012; 7(12): e51044, https://doi.org/10.1371/journal.pone.0051044.
  44. Lauten A., Gerhard-Garcia A., Suhr F., Fischer J.H., Figulla H.R., Bloch W. Impact of ischemia-reperfusion on extracellular matrix processing and structure of the basement membrane of the heart. PLoS One 2014; 9(3): e92833, https://doi.org/10.1371/journal.pone.0092833.
  45. Mundel T.M., Kalluri R. Type IV collagen-derived angiogenesis inhibitors. Microvasc Res 2007; 74(2–3): 85–89, https://doi.org/10.1016/j.mvr.2007.05.005.
  46. Bond R.A., Lucero Garcia-Rojas E.Y., Hegde A., Walker J.K.L. Therapeutic potential of targeting ß-arrestin. Front Pharmacol 2019; 10: 124, https://doi.org/10.3389/fphar.2019.00124.
  47. Okada M., Yamawaki H. A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J Pharmacol Sci 2019; 139(2): 59–64, https://doi.org/10.1016/j.jphs.2018.12.001.
  48. Harkness L.M., Weckmann M., Kopp M., Becker T., Ashton A.W., Burgess J.K. Tumstatin regulates the angiogenic and inflammatory potential of airway smooth muscle extracellular matrix. J Cell Mol Med 2017; 21(12): 3288–3297, https://doi.org/10.1111/jcmm.13232.
  49. Nissen G., Hollaender H., Tang F.S.M., Wegmann M., Lunding L., Vock C., Bachmann A., Lemmel S., Bartels R., Oliver B.G., Burgess J.K., Becker T., Kopp M.V., Weckmann M. Tumstatin fragment selectively inhibits neutrophil infiltration in experimental asthma exacerbation. Clin Exp Allergy 2018; 48(11): 1483–1493, https://doi.org/10.1111/cea.13236.
  50. Ronnow S.R., Sand J.M.B., Langholm L.L., Manon-Jensen T., Karsdal M.A., Tal-Singer R., Miller B.E., Vestbo J., Leeming D.J. Type IV collagen turnover is predictive of mortality in COPD: a comparison to fibrinogen in a prospective analysis of the ECLIPSE cohort. Respir Res 2019; 20(1): 63, https://doi.org/10.1186/s12931-019-1026-x.
  51. Dupont-Deshorgue A., Oudart J.B., Brassart B., Deslee G., Perotin J.M., Diebold M.D., Monboisse J.C., Ramont L., Brassart-Pasco S. A competitive enzyme-linked immunosorbent assay for quantification of tetrastatin in body fluids and tumor extracts. Anal Biochem 2015; 482: 16–21, https://doi.org/10.1016/j.ab.2015.04.023.
  52. Monboisse J.C., Oudart J.B., Ramont L., Brassart-Pasco S., Maquart F.X. Matrikines from basement membrane collagens: a new anti-cancer strategy. Biochim Biophys Acta 2014; 1840(8): 2589–2598, https://doi.org/10.1016/j.bbagen.2013.12.029.
  53. Koskimaki J.E., Karagiannis E.D., Tang B.C., Hammers H., Watkins D.N., Pili R., Popel A.S. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer 2010; 10(1): 29, https://doi.org/10.1186/1471-2407-10-29.
  54. Gunda V., Verma R.K., Sudhakar Y.A. Inhibition of elastin peptide-mediated angiogenic signaling mechanism(s) in choroidal endothelial cells by the alpha6(IV)NC1 collagen fragment. Invest Ophthalmol Vis Sci 2013; 54(13): 7828–7835, https://doi.org/10.1167/iovs.12-10870.
  55. Lee C., Kim M., Lee J.H., Oh J., Shin H.H., Lee S.M., Scherer P.E., Kwon H.M., Choi J.H., Park J. COL6A3-derived endotrophin links reciprocal interactions among hepatic cells in the pathology of chronic liver disease. J Pathol 2019; 247(1): 99–109, https://doi.org/10.1002/path.5172.
  56. Zhao Y., Gu X., Zhang N., Kolonin M.G., An Z., Sun K. Divergent functions of endotrophin on different cell populations in adipose tissue. Am J Physiol Endocrinol Metab 2016; 311(6): E952–E963, https://doi.org/10.1152/ajpendo.00314.2016.
  57. Bu D., Crewe C., Kusminski C.M., Gordillo R., Ghaben A.L., Kim M., Park J., Deng H., Xiong W., Liu X.Z., Lønning P.E., Halberg N., Rios A., Chang Y., Gonzalez A., Zhang N., An Z., Scherer P.E. Human endotrophin as a driver of malignant tumor growth. JCI Insight 2019; 4(9), https://doi.org/10.1172/jci.insight.125094.
  58. Park J., Scherer P.E. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest 2012; 122(11): 4243–4256, https://doi.org/10.1172/jci63930.
  59. Sun K., Park J., Gupta O.T., Holland W.L., Auerbach P., Zhang N., Goncalves Marangoni R., Nicoloro S.M., Czech M.P., Varga J., Ploug T., An Z., Scherer P.E. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat Commun 2014; 5(1): 3485, https://doi.org/10.1038/ncomms4485.
  60. Park J., Morley T.S., Scherer P.E. Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Mol Med 2013; 5(6): 935–948, https://doi.org/10.1002/emmm.201202006.
  61. Kristensen J.H., Larsen L., Dasgupta B., Brodmerkel C., Curran M., Karsdal M.A., Sand J.M., Willumsen N., Knox A.J., Bolton C.E., Johnson S.R., Hagglund P., Svensson B., Leeming D.J. Levels of circulating MMP-7 degraded elastin are elevated in pulmonary disorders. Clin Biochem 2015; 48(16–17): 1083–1088, https://doi.org/10.1016/j.clinbiochem.2015.07.009.
  62. Sand J.M., Knox A.J., Lange P., Sun S., Kristensen J.H., Leeming D.J., Karsdal M.A., Bolton C.E., Johnson S.R. Accelerated extracellular matrix turnover during exacerbations of COPD. Respir Res 2015; 16(1): 69, https://doi.org/10.1186/s12931-015-0225-3.
  63. Kristensen J.H., Karsdal M.A., Sand J.M., Willumsen N., Diefenbach C., Svensson B., Hagglund P., Oersnes-Leeming D.J. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling. BMC Pulm Med 2015; 15: 53, https://doi.org/10.1186/s12890-015-0048-5.
  64. Mecham R.P. Elastin in lung development and disease pathogenesis. Matrix Biol 2018; 73: 6–20, https://doi.org/10.1016/j.matbio.2018.01.005.
  65. Ronnow S.R., Langholm L.L., Sand J.M.B., Thorlacius-Ussing J., Leeming D.J., Manon-Jensen T., Tal-Singer R., Miller B.E., Karsdal M.A., Vestbo J. Specific elastin degradation products are associated with poor outcome in the ECLIPSE COPD cohort. Sci Rep 2019; 9(1): 4064, https://doi.org/10.1038/s41598-019-40785-2.
  66. Turino G.M., Ma S., Lin Y.Y., Cantor J.O., Luisetti M. Matrix elastin: a promising biomarker for chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 184(6): 637–641, https://doi.org/10.1164/rccm.201103-0450pp.
  67. Turino G.M., Lin Y.Y., He J., Cantor J.O., Ma S. Elastin degradation: an effective biomarker in COPD. COPD 2012; 9(4): 435–438, https://doi.org/10.3109/15412555.2012.697753.
  68. Iadarola P., Luisetti M. The role of desmosines as biomarkers for chronic obstructive pulmonary disease. Expert Rev Respir Med 2013; 7(2): 137–144, https://doi.org/10.1586/ers.13.4.
  69. Iimaa T., Ikegami Y., Bual R., Shirakigawa N., Ijima H. Analysis of sulfated glycosaminoglycans in ECM scaffolds for tissue engineering applications: modified alcian blue method development and validation. J Funct Biomater 2019; 10(2), https://doi.org/10.3390/jfb10020019.
  70. Neuman M.G., Cohen L.B., Nanau R.M. Hyaluronic acid as a non-invasive biomarker of liver fibrosis. Clin Biochem 2016; 49(3): 302–315, https://doi.org/10.1016/j.clinbiochem.2015.07.019.
  71. Gudowska M., Cylwik B., Chrostek L. The role of serum hyaluronic acid determination in the diagnosis of liver fibrosis. Acta Biochim Pol 2017; 64(3): 451–457, https://doi.org/10.18388/abp.2016_1443.
  72. Garantziotis S., Brezina M., Castelnuovo P., Drago L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am J Physiol Lung Cell Mol Physiol 2016; 310(9): L785–L795, https://doi.org/10.1152/ajplung.00168.2015.
  73. Toole B.P. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004; 4(7): 528–539, https://doi.org/10.1038/nrc1391.
  74. Jiang D., Liang J., Noble P.W. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91(1): 221–264, https://doi.org/10.1152/physrev.00052.2009.
  75. Petrigni G., Allegra L. Aerosolised hyaluronic acid prevents exercise-induced bronchoconstriction, suggesting novel hypotheses on the correction of matrix defects in asthma. Pulm Pharmacol Ther 2006; 19(3): 166–171, https://doi.org/10.1016/j.pupt.2005.03.002.
  76. Ghosh S., Hoselton S.A., Dorsam G.P., Schuh J.M. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2015; 220(5): 575–588, https://doi.org/10.1016/j.imbio.2014.12.005.
  77. Manzanares D., Monzon M.E., Savani R.C., Salathe M. Apical oxidative hyaluronan degradation stimulates airway ciliary beating via RHAMM and RON. Am J Respir Cell Mol Biol 2007; 37(2): 160–168, https://doi.org/10.1165/rcmb.2006-0413oc.
  78. Leeming D., He Y., Veidal S., Nguyen Q., Larsen D., Koizumi M., Segovia-Silvestre T., Zhang C., Zheng Q., Sun S., Cao Y., Barkholt V., Hagglund P., Bay-Jensen A., Qvist P., Karsdal M. A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 2011; 16(7): 616–628, https://doi.org/10.3109/1354750x.2011.620628.
  79. Segovia-Silvestre T., Reichenbach V., Fernandez-Varo G., Vassiliadis E., Barascuk N., Morales-Ruiz M., Karsdal M.A., Jimenez W. Circulating CO3-610, a degradation product of collagen III, closely reflects liver collagen and portal pressure in rats with fibrosis. Fibrogenesis Tissue Repair 2011; 4: 19, https://doi.org/10.1186/1755-1536-4-19.
  80. Veidal S.S., Larsen D.V., Chen X., Sun S., Zheng Q., Bay-Jensen A.C., Leeming D.J., Nawrocki A., Larsen M.R., Schett G., Karsdal M.A. MMP mediated type V collagen degradation (C5M) is elevated in ankylosing spondylitis. Clin Biochem 2012; 45(7–8): 541–546, https://doi.org/10.1016/j.clinbiochem.2012.02.007.
  81. Bager C.L., Willumsen N., Leeming D.J., Smith V., Karsdal M.A., Dornan D., Bay-Jensen A.C. Collagen degradation products measured in serum can separate ovarian and breast cancer patients from healthy controls: a preliminary study. Cancer Biomark 2015; 15(6): 783–788, https://doi.org/10.3233/cbm-150520.
  82. Leeming D.J., Sand J.M., Nielsen M.J., Genovese F., Martinez F.J., Hogaboam C.M., Han M.K., Klickstein L.B., Karsdal M.A. Serological investigation of the collagen degradation profile of patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Biomark Insights 2012; 7: 119–126, https://doi.org/10.4137/bmi.s9415.
  83. Jenkins R.G., Simpson J.K., Saini G., Bentley J.H., Russell A.M., Braybrooke R., Molyneaux P.L., McKeever T.M., Wells A.U., Flynn A., Hubbard R.B., Leeming D.J., Marshall R.P., Karsdal M.A., Lukey P.T., Maher T.M. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med 2015; 3(6): 462–472, https://doi.org/10.1016/s2213-2600(15)00048-x.
  84. Bay-Jensen A.C., Leeming D.J., Kleyer A., Veidal S.S., Schett G., Karsdal M.A. Ankylosing spondylitis is characterized by an increased turnover of several different metalloproteinase-derived collagen species: a cross-sectional study. Rheumatol Int 2012; 32(11): 3565–3572, https://doi.org/10.1007/s00296-011-2237-8.
  85. Schumann D.M., Leeming D., Papakonstantinou E., Blasi F., Kostikas K., Boersma W., Louis R., Milenkovic B., Aerts J., Sand J.M.B., Wouters E.F.M., Rohde G., Prat C., Torres A., Welte T., Tamm M., Karsdal M., Stolz D. Collagen degradation and formation are elevated in exacerbated COPD compared with stable disease. Chest 2018; 154(4): 798–807, https://doi.org/10.1016/j.chest.2018.06.028.
  86. Lofvall H., Newbould H., Karsdal M.A., Dziegiel M.H., Richter J., Henriksen K., Thudium C.S. Osteoclasts degrade bone and cartilage knee joint compartments through different resorption processes. Arthritis Res Ther 2018; 20(1): 67, https://doi.org/10.1186/s13075-018-1564-5.
  87. Bay-Jensen A.C., Liu Q., Byrjalsen I., Li Y., Wang J., Pedersen C., Leeming D.J., Dam E.B., Zheng Q., Qvist P., Karsdal M.A. Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM — increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 2011; 44(5–6): 423–429, https://doi.org/10.1016/j.clinbiochem.2011.01.001.
  88. Yarmola E.G., Shah Y.Y., Kloefkorn H.E., Dobson J., Allen K.D. Comparing intra-articular CTXII levels assessed via magnetic capture or lavage in a rat knee osteoarthritis model. Osteoarthritis Cartilage 2017; 25(7): 1189–1194, https://doi.org/10.1016/j.joca.2017.01.009.
  89. Gabusi E., Paolella F., Manferdini C., Gambari L., Kon E., Filardo G., Mariani E., Lisignoli G. Cartilage and bone serum biomarkers as novel tools for monitoring knee osteochondritis dissecans treated with osteochondral scaffold. Biomed Res Int 2018; 2018: 9275102, https://doi.org/10.1155/2018/9275102.
  90. Tomonaga A., Takahashi T., Tanaka Y.T., Tsuboi M., Ito K., Nagaoka I. Evaluation of the effect of salmon nasal proteoglycan on biomarkers for cartilage metabolism in individuals with knee joint discomfort: a randomized double-blind placebo-controlled clinical study. Exp Ther Med 2017; 14(1): 115–126, https://doi.org/10.3892/etm.2017.4454.
  91. Nemirovskiy O.V., Dufield D.R., Sunyer T., Aggarwal P., Welsch D.J., Mathews W.R. Discovery and development of a type II collagen neoepitope (TIINE) biomarker for matrix metalloproteinase activity: from in vitro to in vivo. Anal Biochem 2007; 361(1): 93–101, https://doi.org/10.1016/j.ab.2006.10.034.
  92. Sand J.M., Martinez G., Midjord A.K., Karsdal M.A., Leeming D.J., Lange P. Characterization of serological neo-epitope biomarkers reflecting collagen remodeling in clinically stable chronic obstructive pulmonary disease. Clin Biochem 2016; 49(15): 1144–1151, https://doi.org/10.1016/j.clinbiochem.2016.09.003.
  93. Genovese F., Boor P., Papasotiriou M., Leeming D.J., Karsdal M.A., Floege J. Turnover of type III collagen reflects disease severity and is associated with progression and microinflammation in patients with IgA nephropathy. Nephrol Dial Transplant 2016; 31(3): 472–479, https://doi.org/10.1093/ndt/gfv301.
  94. Stribos E.G.D., Nielsen S.H., Brix S., Karsdal M.A., Seelen M.A., van Goor H., Bakker S.J.L., Olinga P., Mutsaers H.A.M., Genovese F. Non-invasive quantification of collagen turnover in renal transplant recipients. PLoS One 2017; 12(4): e0175898, https://doi.org/10.1371/journal.pone.0175898.
  95. Sand J.M., Larsen L., Hogaboam C., Martinez F., Han M., Rossel Larsen M., Nawrocki A., Zheng Q., Karsdal M.A., Leeming D.J. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis — validation of two novel biomarker assays. PLoS One 2013; 8(12): e84934, https://doi.org/10.1371/journal.pone.0084934.
  96. Skjot-Arkil H., Clausen R.E., Rasmussen L.M., Wang W., Wang Y., Zheng Q., Mickley H., Saaby L., Diederichsen A.C., Lambrechtsen J., Martinez F.J., Hogaboam C.M., Han M., Larsen M.R., Nawrocki A., Vainer B., Krustrup D., Bjorling-Poulsen M., Karsdal M.A., Leeming D.J. Acute myocardial infarction and pulmonary diseases result in two different degradation profiles of elastin as quantified by two novel ELISAs. PLoS One 2013; 8(6): e60936, https://doi.org/10.1371/journal.pone.0060936.
  97. Genovese F., Karsdal M.A., Leeming D.J., Scholze A., Tepel M. Association of versican turnover with all-cause mortality in patients on haemodialysis. PLoS One 2014; 9(10): e111134, https://doi.org/10.1371/journal.pone.0111134.
  98. Daghestani H.N., Jordan J.M., Renner J.B., Doherty M., Wilson A.G., Kraus V.B. Serum N-propeptide of collagen IIA (PIIANP) as a marker of radiographic osteoarthritis burden. PLoS One 2017; 12(12): e0190251, https://doi.org/10.1371/journal.pone.0190251.
  99. Leeming D.J., Karsdal M.A., Byrjalsen I., Bendtsen F., Trebicka J., Nielsen M.J., Christiansen C., Moller S., Krag A. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther 2013; 38(9): 1086–1096, https://doi.org/10.1111/apt.12484.
  100. Bay-Jensen A.C., Hoegh-Madsen S., Dam E., Henriksen K., Sondergaard B.C., Pastoureau P., Qvist P., Karsdal M.A. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int 2010; 30(4): 435–442, https://doi.org/10.1007/s00296-009-1183-1.
  101. Lees S., Golub S.B., Last K., Zeng W., Jackson D.C., Sutton P., Fosang A.J. Bioactivity in an aggrecan 32-mer fragment is mediated via toll-like receptor 2. Arthritis Rheumatol 2015; 67(5): 1240–1249, https://doi.org/10.1002/art.39063.
  102. Hendrix A.Y., Kheradmand F. The role of matrix metalloproteinases in development, repair, and destruction of the lungs. Prog Mol Biol Transl Sci 2017; 148: 1–29, https://doi.org/10.1016/bs.pmbts.2017.04.004.
  103. Hogg J.C., Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009; 4: 435–459, https://doi.org/10.1146/annurev.pathol.4.110807.092145.
  104. Brusselle G.G., Joos G.F., Bracke K.R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011; 378(9795): 1015–1026, https://doi.org/10.1016/s0140-6736(11)60988-4.
  105. Kelly E.A., Jarjour N.N. Role of matrix metalloproteinases in asthma. Curr Opin Pulm Med 2003; 9(1): 28–33, https://doi.org/10.1097/00063198-200301000-00005.
  106. Zhou X., Wei T., Cox C.W., Jiang Y., Roche W.R., Walls A.F. Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy 2018, https://doi.org/10.1111/all.13666.
  107. Navratilova Z., Kolek V., Petrek M. Matrix metalloproteinases and their inhibitors in chronic obstructive pulmonary disease. Arch Immunol Ther Exp (Warsz) 2016; 64(3): 177–193, https://doi.org/10.1007/s00005-015-0375-5.
  108. Mulyadi, Sunnati, Azhary M., Yunus F., Nurwidya F. The correlation of age and body mass index with the level of both protease MMP3 and anti-protease TIMP-1 among Indonesian patients with chronic obstructive pulmonary disease: a preliminary findings. BMC Res Notes 2018; 11(1): 551, https://doi.org/10.1186/s13104-018-3669-y.
  109. Naik S.P., Mahesh P.A., Jayaraj B.S., Madhunapantula S.V., Jahromi S.R., Yadav M.K. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma. J Asthma 2017; 54(6): 584–593, https://doi.org/10.1080/02770903.2016.1244828.
  110. Ingram J.L., Slade D., Church T.D., Francisco D., Heck K., Sigmon R.W., Ghio M., Murillo A., Firszt R., Lugogo N.L., Que L., Sunday M.E., Kraft M. Role of matrix metalloproteinases-1 and -2 in interleukin-13-suppressed elastin in airway fibroblasts in asthma. Am J Respir Cell Mol Biol 2016; 54(1): 41–50, https://doi.org/10.1165/rcmb.2014-0290oc.
  111. Pham D.N., Chu H.W., Martin R.J., Kraft M. Increased matrix metalloproteinase-9 with elastolysis in nocturnal asthma. Ann Allergy Asthma Immunol 2003; 90(1): 72–78, https://doi.org/10.1016/s1081-1206(10)63617-4.
  112. Tiotiu A. Biomarkers in asthma: state of the art. Asthma Res Pract 2018; 4: 10, https://doi.org/10.1186/s40733-018-0047-4.
  113. Asano Y., Ihn H., Jinnin M., Tamaki Z., Tamaki K., Sato S. Serum levels of matrix metalloproteinase-13 in patients with eosinophilic fasciitis. J Dermatol 2014; 41(8): 746–748, https://doi.org/10.1111/1346-8138.12563.
  114. Naveed S.U., Clements D., Jackson D.J., Philp C., Billington C.K., Soomro I., Reynolds C., Harrison T.W., Johnston S.L., Shaw D.E., Johnson S.R. Matrix metalloproteinase-1 activation contributes to airway smooth muscle growth and asthma severity. Am J Respir Crit Care Med 2017; 195(8): 1000–1009, https://doi.org/10.1164/rccm.201604-0822oc.
  115. Munshi H.G., Stack M.S. Analysis of matrix degradation. Methods Cell Biol 2002; 69: 195–205, https://doi.org/10.1016/s0091-679x(02)69013-2.
  116. Bencsik P., Bartekova M., Gorbe A., Kiss K., Paloczi J., Radosinska J., Szucs G., Ferdinandy P. MMP activity detection in zymograms. Methods Mol Biol 2017; 1626: 53–70, https://doi.org/10.1007/978-1-4939-7111-4_6.
  117. Richards C.D. Innate immune cytokines, fibroblast phenotypes, and regulation of extracellular matrix in lung. J Interferon Cytokine Res 2017; 37(2): 52–61, https://doi.org/10.1089/jir.2016.0112.
  118. Tsuda T. Extracellular interactions between fibulins and transforming growth factor (TGF)-beta in physiological and pathological conditions. Int J Mol Sci 2018; 19(9): 2787, https://doi.org/10.3390/ijms19092787.
  119. Schönherr E., Hausser H.J. Extracellular matrix and cytokines: a functional unit. Dev Immunol 2000; 7(2–4): 89–101, https://doi.org/10.1155/2000/31748.
  120. Hoshino M., Ohtawa J., Akitsu K. Effect of treatment with inhaled corticosteroid on serum periostin levels in asthma. Respirology 2016; 21(2): 297–303, https://doi.org/10.1111/resp.12687.
  121. Caminati M., Gatti D., Dama A., Lorenzetti L., Senna G. Serum periostin during omalizumab therapy in asthma: a tool for patient selection and treatment evaluation. Ann Allergy Asthma Immunol 2017; 119(5): 460–462, https://doi.org/10.1016/j.anai.2017.08.004.
  122. Medrek S.K., Parulekar A.D., Hanania N.A. Predictive biomarkers for asthma therapy. Curr Allergy Asthma Rep 2017; 17(10): 69, https://doi.org/10.1007/s11882-017-0739-5.
  123. Solanki B., Prakash A., Rehan H.S., Gupta L.K. Effect of inhaled corticosteroids on serum periostin levels in adult patients with mild-moderate asthma. Allergy Asthma Proc 2019; 40(1): 32–34, https://doi.org/10.2500/aap.2019.40.4179.
  124. Grande J.P. Role of transforming growth factor-beta in tissue injury and repair. Proc Soc Exp Biol Med 1997; 214(1): 27–40, https://doi.org/10.3181/00379727-214-44066.
  125. Liu K., Qian Y.L., Fan Z.H. Review on transforming growth factor beta and repair of tissue injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 1999; 13(5): 283–286.
  126. Wang F., Wei Z.L., Sun X.R., Zhang Q., Zhang C.X., Jiang W.X., Yan X., Liu J.N., Yuan X. Apoptosis inducing factor is involved in stretch-induced apoptosis of myoblast via a caspase-9 independent pathway. J Cell Biochem 2017; 118(4): 829–838, https://doi.org/10.1002/jcb.25759.
  127. Johnston E.F., Gillis T.E. Transforming growth factor beta-1 (TGF-beta1) stimulates collagen synthesis in cultured rainbow trout cardiac fibroblasts. J Exp Biol 2017; 220(Pt 14): 2645–2653, https://doi.org/10.1242/jeb.160093.
  128. Takeda N., Hara H., Fujiwara T., Kanaya T., Maemura S., Komuro I. TGF-beta Signaling-related genes and thoracic aortic aneurysms and dissections. Int J Mol Sci 2018; 19(7): 2125, https://doi.org/10.3390/ijms19072125.
  129. Low E.L., Baker A.H., Bradshaw A.C. TGFbeta, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53: 90–101, https://doi.org/10.1016/j.cellsig.2018.09.004.
  130. Lin C.J., Lin C.Y., Stitziel N.O. Genetics of the extracellular matrix in aortic aneurysmal diseases. Matrix Biol 2018; 71–72: 128–143, https://doi.org/10.1016/j.matbio.2018.04.005.
  131. Theocharis A.D., Manou D., Karamanos N.K. The extracellular matrix as a multitasking player in disease. FEBS J 2019, https://doi.org/10.1111/febs.14818.
  132. Keene D.R., Tufa S.F. Ultrastructural analysis of the extracellular matrix. Methods Cell Biol 2018; 143: 1–39, https://doi.org/10.1016/bs.mcb.2017.08.002.
  133. Shih C.C., Oakley D.M., Joens M.S., Roth R.A., Fitzpatrick J.A.J. Nonlinear optical imaging of extracellular matrix proteins. Methods Cell Biol 2018; 143: 57–78, https://doi.org/10.1016/bs.mcb.2017.08.004.
  134. Leonard A.K., Loughran E.A., Klymenko Y., Liu Y., Kim O., Asem M., McAbee K., Ravosa M.J., Stack M.S. Methods for the visualization and analysis of extracellular matrix protein structure and degradation. Methods Cell Biol 2018; 143: 79–95, https://doi.org/10.1016/bs.mcb.2017.08.005.
  135. Rittie L. Method for picrosirius red-polarization detection of collagen fibers in tissue sections. Methods Mol Biol 2017; 1627: 395–407, https://doi.org/10.1007/978-1-4939-7113-8_26.
  136. Streltsova O.S., Maslennikova А.V., Yunusova K.E., Dudenkova V.V., Kiseleva E.B., Kochueva М.V., Tararova E.A., Malikov D.K., Vorobieva A.S., Krupin V.N. Nonlinear microscopy in studying extracellular matrix state of the urinary bladder in severe complications after radiation therapy of female pelvic tumors. Sovremennye tehnologii v medicine 2017; 9(2): 19–28, https://doi.org/10.17691/stm2017.9.2.02.
  137. Golaraei A., Mirsanaye K., Ro Y., Krouglov S., Akens M.K., Wilson B.C., Barzda V. Collagen chirality and three-dimensional orientation studied with polarimetric second-harmonic generation microscopy. J Biophotonics 2019; 12(1): e201800241, https://doi.org/10.1002/jbio.201800241.
  138. Thomas G., van Voskuilen J., Gerritsen H.C., Sterenborg H.J. Advances and challenges in label-free nonlinear optical imaging using two-photon excitation fluorescence and second harmonic generation for cancer research. J Photochem Photobiol B 2014; 141: 128–138, https://doi.org/10.1016/j.jphotobiol.2014.08.025.
  139. Gorska K., Korczynski P., Mierzejewski M., Kosciuch J., Zukowska M., Maskey-Warzechowska M., Krenke R. Comparison of endobronchial ultrasound and high resolution computed tomography as tools for airway wall imaging in asthma and chronic obstructive pulmonary disease. Respir Med 2016; 117: 131–138, https://doi.org/10.1016/j.rmed.2016.06.011.
  140. Hartley R.A., Barker B.L., Newby C., Pakkal M., Baldi S., Kajekar R., Kay R., Laurencin M., Marshall R.P., Sousa A.R., Parmar H., Siddiqui S., Gupta S., Brightling C.E. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: a single-center study. J Allergy Clin Immunol 2016; 137(5): 1413–1422.e1412, https://doi.org/10.1016/j.jaci.2016.02.001.
  141. Ding M., Chen Y., Guan W.J., Zhong C.H., Jiang M., Luo W.Z., Chen X.B., Tang C.L., Tang Y., Jian Q.M., Wang W., Li S.Y., Zhong N.S. Measuring airway remodeling in patients with different copd staging using endobronchial optical coherence tomography. Chest 2016; 150(6): 1281–1290, https://doi.org/10.1016/j.chest.2016.07.033.
  142. d’Hooghe J.N.S., Goorsenberg A.W.M., de Bruin D.M., Roelofs J., Annema J.T., Bonta P.I. Optical coherence tomography for identification and quantification of human airway wall layers. PLoS One 2017; 12(10): e0184145, https://doi.org/10.1371/journal.pone.0184145.
  143. Chen Y., Ding M., Guan W.J., Wang W., Luo W.Z., Zhong C.H., Jiang M., Jiang J.H., Gu Y.Y., Li S.Y., Zhong N.S. Validation of human small airway measurements using endobronchial optical coherence tomography. Respir Med 2015; 109(11): 1446–1453, https://doi.org/10.1016/j.rmed.2015.09.006.
  144. Goorsenberg A.W.M., d’Hooghe J.N.S., de Bruin D.M., van den Berk I.A.H., Annema J.T., Bonta P.I. Bronchial thermoplasty-induced acute airway effects assessed with optical coherence tomography in severe asthma. Respiration 2018; 96(6): 564–570, https://doi.org/10.1159/000491676.
  145. Stoilov I., Starcher B.C., Mecham R.P., Broekelmann T.J. Measurement of elastin, collagen, and total protein levels in tissues. Methods Cell Biol 2018; 143: 133–146, https://doi.org/10.1016/bs.mcb.2017.08.008.
  146. Srivastava A.K., Khare P., Nagar H.K., Raghuwanshi N., Srivastava R. Hydroxyproline: a potential biochemical marker and its role in the pathogenesis of different diseases. Curr Protein Pept Sci 2016; 17(6): 596–602, https://doi.org/10.2174/1389203717666151201192247.
  147. Trackman P.C., Bais M.V. Measurement of lysyl oxidase activity from small tissue samples and cell cultures. Methods Cell Biol 2018; 143: 147–156, https://doi.org/10.1016/bs.mcb.2017.08.009.
  148. Tomasini-Johansson B.R., Mosher D.F. Microtiter assays for quantitation of assembly of plasma and cellular fibronectin. Methods Cell Biol 2018; 143: 157–170, https://doi.org/10.1016/bs.mcb.2017.10.001.
  149. Midura R.J., Cali V., Lauer M.E., Calabro A., Hascall V.C. Quantification of hyaluronan (HA) using a simplified fluorophore-assisted carbohydrate electrophoresis (FACE) procedure. Methods Cell Biol 2018; 143: 297–316, https://doi.org/10.1016/bs.mcb.2017.08.017.
  150. Witz C.A., Montoya-Rodriguez I.A., Cho S., Centonze V.E., Bonewald L.F., Schenken R.S. Composition of the extracellular matrix of the peritoneum. J Soc Gynecol Investig 2001; 8(5): 299–304, https://doi.org/10.1177/107155760100800508.
  151. Lee E.R., Lamplugh L., Kluczyk B., Leblond C.P., Mort J.S. Neoepitopes reveal the features of type II collagen cleavage and the identity of a collagenase involved in the transformation of the epiphyses anlagen in development. Dev Dyn 2009; 238(6): 1547–1563, https://doi.org/10.1002/dvdy.21960.
Tush E.V., Eliseeva Т.I., Khaletskaya О.V., Krasilnikova S.V., Ovsyannikov D.Yu., Potemina T.E., Ignatov S.K. Extracellular Matrix Markers and Methods for Their Study (Review). Sovremennye tehnologii v medicine 2019; 11(2): 133, https://doi.org/10.17691/stm2019.11.2.20


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg