Сегодня: 19.05.2025
RU / EN
Последнее обновление: 30.04.2025
Расчет объема выборки для клинических испытаний систем поддержки принятия врачебных решений с бинарным откликом

Расчет объема выборки для клинических испытаний систем поддержки принятия врачебных решений с бинарным откликом

О.Ю. Реброва, А.В. Гусев
Ключевые слова: системы поддержки принятия врачебных решений; диагностические модели; прогностические модели; объем выборки; бинарный исход; клинические испытания; внешняя валидация.
2022, том 14, номер 3, стр. 6.

Полный текст статьи

html pdf
2312
2488

В настоящее время идет активная разработка программных продуктов для применения в медицине. Среди них доминирующую долю занимают системы поддержки принятия врачебных решений (СППВР), которые могут быть интеллектуальными (основанными на математических моделях, полученных методами машинного обучения, или на других технологиях искусственного интеллекта) или неинтеллектуальными. Государственная регистрация СППВР как программных медицинских продуктов предусматривает проведение клинических испытаний, протокол которых разрабатывается совместно разработчиком и уполномоченной медицинской организацией. Одним из обязательных компонентов протокола является расчет объема выборки.

В данной статье рассмотрен расчет объема выборки для наиболее распространенного случая — бинарного отклика в диагностических/скрининговых и прогностических системах. Для диагностических/скрининговых моделей рассмотрены случаи несравнительного исследования, сравнительного исследования с проверкой гипотезы превосходства, сравнительного исследования с проверкой гипотезы не меньшей точности в исследованиях одномоментного дизайна. Для прогностических моделей рассмотрены случаи рандомизированных контролируемых испытаний комплексного вмешательства «прогноз + прогноз-зависимое ведение пациента» с проверкой гипотезы превосходства и не меньшей точности.

Подчеркивается, что не менее важным, чем объем выборки, аспектом клинических испытаний является также репрезентативность выборки и другие компоненты дизайна. Они даже более важны, так как систематические ошибки в клинических испытаниях первичны, и самый изощренный статистический анализ не может возместить дефекты дизайна. Редукция клинических испытаний до внешней валидизации моделей (оценки метрик точности на внешних данных) представляется совершенно необоснованной. Рекомендуется проводить клинические испытания с адекватным задачам дизайном, с тем чтобы далее был возможен клинико-экономический анализ и комплексная оценка медицинских технологий.

Описанные в статье методы расчетов объема выборки потенциально могут быть применены и к более широкому спектру медицинских изделий.


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank