Today: Jul 18, 2024
Last update: Jul 1, 2024
Scaffolds Based on Poly(3-Hydroxybutyrate) and Its Copolymers for Bone Tissue Engineering (Review)

Scaffolds Based on Poly(3-Hydroxybutyrate) and Its Copolymers for Bone Tissue Engineering (Review)

Bonartsev A.P., Voinova V.V., Volkov A.V., Muraev A.A., Boyko E.M., Venediktov A.A., Didenko N.N., Dolgalev A.A.
Key words: scaffolds; matrices; polyhydroxyalkanoates; poly(3-hydroxybutyrate); mesenchymal stem cells; bone defects; osteoinductive properties; bone regeneration.
2022, volume 14, issue 5, page 78.

Full text

html pdf

Biodegradable and biocompatible polymers are actively used in tissue engineering to manufacture scaffolds. Biomedical properties of polymer scaffolds depend on the physical and chemical characteristics and biodegradation kinetics of the polymer material, 3D microstructure and topography of the scaffold surface, as well as availability of minerals, medicinal agents, and growth factors loaded into the scaffold. However, in addition to the above, the intrinsic biological activity of the polymer and its biodegradation products can also become evident. This review provides studies demonstrating that scaffolds made of poly(3-hydroxybutyrate) (PHB) and its copolymers have their own biological activity, and namely, osteoinductive properties. PHB can induce differentiation of mesenchymal stem cells in the osteogenic direction in vitro and stimulates bone tissue regeneration during the simulation of critical and non-critical bone defects in vivo.

  1. Paschos N.K., Brown W.E., Eswaramoorthy R., Hu J.C., Athanasiou K.A. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 2015; 9(5): 488–503,
  2. Oryan A., Alidadi S., Moshiri A., Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res 2014; 9(1): 18,
  3. Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat Rev Mater 2020; 5: 584–603,
  4. Wei G., Ma P.X. Polymeric biomaterials for tissue engineering. In: Tissue engineering using ceramics and polymers. 2nd edition. Boccaccini A.R., Ma P.X. (editors). Cambridge: Elsewier; 2014; p. 35–66,
  5. Lim J., You M., Li J., Li Z. Emerging bone tissue engineering via polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C Mater Biol Appl 2017; 79: 917–929,
  6. Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev 2016; 107: 367–392,
  7. Feng Y., Zhu S., Mei D., Li J., Zhang J., Yang S., Guan S. Application of 3D printing technology in bone tissue engineering: a review. Curr Drug Deliv 2021; 18(7): 847–861,
  8. Chahal S., Kumar A., Hussian F.S.J. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 2019; 30(14): 1308–1355,
  9. Murray I.R., West C.C., Hardy W.R., James A.W., Park T.S., Nguyen A., Tawonsawatruk T., Lazzari L., Soo C., Péault B. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 2014; 71(8): 1353–1374,
  10. Shang F., Yu Y., Liu S., Ming L., Zhang Y., Zhou Z., Zhao J., Jin Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater 2020; 6(3): 666–683,
  11. Marolt Presen D., Traweger A., Gimona M., Redl H. Mesenchymal stromal cell-based bone regeneration therapies: from cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol 2019; 7: 352,
  12. Mokhtarzadeh A., Alibakhshi A., Hejazi M., Omidi Y., Dolatabadi J.E.N. Bacterial-derived biopolymers: advanced natural nanomaterials for drug delivery and tissue engineering. Trends Anal Chem 2016; 82: 367–384,
  13. Bonartsev A.P. Poly(3-hydroxybutyrate): applications. In: Encyclopedia of polymer applications. Mishra M. (editor). Boca Raton: CRC Press; 2019; p. 2061–2076.
  14. Wang Y.W., Wu Q., Chen G.Q. Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 2004; 25(4): 669–675,
  15. Misra S.K., Ansari T., Mohn D., Valappil S.P., Brunner T.J., Stark W.J., Roy I., Knowles J.C., Sibbons P.D., Jones E.V., Boccaccini A.R., Salih V. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. J R Soc Interface 2010; 7(44): 453–465,
  16. Hosseini F.S., Soleimanifar F., Aidun A., Enderami S.E., Saburi E., Marzouni H.Z., Khani M.M., Khojasteh A., Ardeshirylajimi A. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) improved osteogenic differentiation of the human induced pluripotent stem cells while considered as an artificial extracellular matrix. J Cell Physiol 2019; 234(7): 11537–11544,
  17. Lü L.X., Wang Y.Y., Mao X., Xiao Z.D., Huang N.P. The effects of PHBV electrospun fibers with different diameters and orientations on growth behavior of bone-marrow-derived mesenchymal stem cells. Biomed Mater 2012; 7(1): 015002,
  18. Bretcanu O., Misra S., Roy I., Renghini C., Fiori F., Boccaccini A.R., Salih V. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med 2009; 3(2): 139–148,
  19. Aghajanian A.H., Bigham A., Sanati A., Kefayat A., Salamat M.R., Sattary M., Rafienia M. A 3D macroporous and magnetic Mg2SiO4-CuFe2O4 scaffold for bone tissue regeneration: surface modification, in vitro and in vivo studies. Biomater Adv 2022; 137: 212809,
  20. Shumilova A.A., Myltygashev M.P., Kirichenko A.K., Nikolaeva E.D., Volova T.G., Shishatskaya E.I. Porous 3D implants of degradable poly-3-hydroxybutyrate used to enhance regeneration of rat cranial defect. J Biomed Mater Res A 2017; 105(2): 566–577,
  21. Köse G.T., Korkusuz F., Korkusuz P., Purali N., Ozkul A., Hasirci V. Bone generation on PHBV matrices: an in vitro study. Biomaterials 2003; 24(27): 4999–5007, 14559013,
  22. Bonartsev A.P., Zharkova I.I., Yakovlev S.G., Myshkina V.L., Makhina T.K., Zernov A.L., Kudryashova K.S., Feofanov A.V., Akulina E.A., Ivanova E.V., Zhuikov V.A., Volkov A.V., Andreeva N.V., Voinova V.V., Bonartseva G.A., Shaitan K.V., Kirpichnikov M.P. 3D scaffolds from poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer. J Biomater Tissue Eng 2016; 6(1): 42–52,
  23. Wang Y., Jiang X.L., Peng S.W., Guo X.Y., Shang G.G., Chen J.C., Wu Q., Chen G.Q. Induced apoptosis of osteoblasts proliferating on polyhydroxyalkanoates. Biomaterials 2013; 34(15): 3737–3746,
  24. Hu Y.J., Wei X., Zhao W., Liu Y.S., Chen G.Q. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater 2009; 5(4): 1115–1125,
  25. Yu B.Y., Chen P.Y., Sun Y.M., Lee Y.T., Young T.H. Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. J Biomater Sci Polym Ed 2012; 23(1–4): 1–26,
  26. Lomas A.J., Chen G.G., El Haj A.J., Forsyth N.R. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) supports adhesion and migration of mesenchymal stem cells and tenocytes. World J Stem Cells 2012; 4(9): 94–100,
  27. Volkov A.V., Muraev A.A., Zharkova I.I., Voinova V.V., Akoulina E.A., Zhuikov V.A., Khaydapova D.D., Chesnokova D.V., Menshikh K.A., Dudun A.A., Makhina T.K., Bonartseva G.A., Asfarov T.F., Stamboliev I.A., Gazhva Y.V., Ryabova V.M., Zlatev L.H., Ivanov S.Y., Shaitan K.V., Bonartsev A.P. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. Mater Sci Eng C Mater Biol Appl 2020; 114: 110991,
  28. Lü L.X., Zhang X.F., Wang Y.Y., Ortiz L., Mao X., Jiang Z.L., Xiao Z.D., Huang N.P. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. ACS Appl Mater Interfaces 2013; 5(2): 319–330,
  29. de Paula A.C., Zonari A.A., Martins T.M., Novikoff S., da Silva A.R., Correlo V.M., Reis R.L., Gomes D.A., Goes A.M. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds. Tissue Eng Part A 2013; 19(1–2): 277–289,
  30. Gorodzha S.N., Muslimov A.R., Syromotina D.S., Timin A.S., Tcvetkov N.Y., Lepik K.V., Petrova A.V., Surmeneva M.A., Gorin D.A., Sukhorukov G.B., Surmenev R.A. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering. Colloids Surf B Biointerfaces 2017; 160: 48–59,
  31. Cool S.M., Kenny B., Wu A., Nurcombe V., Trau M., Cassady A.I., Grøndahl L. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res A 2007; 82(3): 599–610,
  32. Köse G.T., Ber S., Korkusuz F., Hasirci V. Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. J Mater Sci Mater Med 2003; 14(2): 121–126,
  33. Wang Y., Gao R., Wang P.P., Jian J., Jiang X.L., Yan C., Lin X., Wu L., Chen G.Q., Wu Q. The differential effects of aligned electrospun PHBHHx fibers on adipogenic and osteogenic potential of MSCs through the regulation of PPARγ signaling. Biomaterials 2012; 33(2): 485–493, 22014456,
  34. Liu W., Jiao T., Su Y., Wei R., Wang Z., Liu J., Fu N., Sui L. Electrospun porous poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/lecithin scaffold for bone tissue engineering. RSC Adv 2022; 12(19): 11913–11922,
  35. Zonari A., Novikoff S., Electo N.R., Breyner N.M., Gomes D.A., Martins A., Neves N.M., Reis R.L., Goes A.M. Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One 2012; 7(4): e35422,
  36. Sundaramurthi D., Krishnan U.M., Sethuraman S. Epidermal differentiation of stem cells on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers. Ann Biomed Eng 2014; 42(12): 2589–2599,
  37. Fischer D., Li Y., Ahlemeyer B., Krieglstein J., Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003; 24(7): 1121–1131,
  38. Wang Y.W., Yang F., Wu Q., Cheng Y.C., Yu P.H., Chen J., Chen G.Q. Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 2005; 26(7): 755–761,
  39. Ostwald J., Dommerich S., Nischan C., Kramp B. In vitro culture of cells from respiratory mucosa on foils of collagen, poly-L-lactide (PLLA) and poly-3-hydroxy-butyrate (PHB). Laryngorhinootologie 2003; 82(10): 693–699,
  40. Chanvel-Lesrat D.J., Pellen-Mussi P., Auroy P., Bonnaure-Mallet M. Evaluation of the in vitro biocompatibility of various elastomers. Biomaterials 1999; 20(3): 291–299,
  41. Wollenweber M., Domaschke H., Hanke T., Boxberger S., Schmack G., Gliesche K., Scharnweber D., Worch H. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 2006; 12(2): 345–359,
  42. Criscenti G., Vasilevich A., Longoni A., De Maria C., van Blitterswijk C.A., Truckenmuller R., Vozzi G., De Boer J., Moroni L. 3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomater 2017; 55: 310–322,
  43. Boyan B.D., Hummert T.W., Dean D.D., Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996; 17(2): 137–146,
  44. Bowers K.T., Keller J.C., Randolph B.A., Wick D.G., Michaels C.M. Optimization of surface micromorphology for enhanced osteoblasts responses in vitro. Int J Oral Maxillofac Implants 1992; 7(3): 302–310.
  45. Cochran D., Simpson J., Weber H.P., Buser D. Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Max Impl 1994; 9(3): 289–297.
  46. Saad B., Ciardelli G., Matter S., Welti M., Uhlschmid G.K., Neuenschwander P., Suter U.W. Characterization of the cell response of cultured macrophages and fibroblasts to particles of short-chain poly[(R)-3-hydroxybutyric acid]. J Biomed Mater Res 1996; 30(4): 429–439,;2-r.
  47. Wu A.C., Grøndahl L., Jack K.S., Foo M.X., Trau M., Hume D.A., Cassady A.I. Reduction of the in vitro pro-inflammatory response by macrophages to poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Biomaterials 2006; 27(27): 4715–4725,
  48. Menzyanova N.G., Pyatina S.A., Nikolaeva E.D., Shabanov A.V., Nemtsev I.V., Stolyarov D.P., Dryganov D.B., Sakhnov E.V., Shishatskaya E.I. Screening of biopolymeric materials for cardiovascular surgery toxicity — evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients. Toxicol Rep 2018; 6: 74–90,
  49. Bat E., van Kooten T.G., Feijen J., Grijpma D.W. Macrophage-mediated erosion of gamma irradiated poly(trimethylene carbonate) films. Biomaterials 2009; 30(22): 3652–3661,
  50. Kulikouskaya V.I., Nikalaichuk V.V., Bonartsev A.P., Akoulina E.A., Belishev N.V., Demianova I.V., Chesnokova D.V., Makhina T.K., Bonartseva G.A., Shaitan K.V., Hileuskaya K.S., Voinova V.V. Honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): physicochemical characterization and mesenchymal stem cells behavior. Polymers (Basel) 2022; 14(13): 2671,
  51. Cheng S., Chen G.Q., Leski M., Zou B., Wang Y., Wu Q. The effect of D,L-β-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials 2006; 27(20): 3758–3765,
  52. Cheng S., Wu Q., Yang F., Xu M., Leski M., Chen G.Q. Influence of DL-3-hydroxybutyric acid on cell proliferation and calcium influx. Biomacromolecules 2005; 6(2): 593–597,
  53. Zhao Y., Zou B., Shi Z., Wu Q., Chen G.Q. The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 2007; 28(20): 3063–3073,
  54. Zou X.H., Li H.M., Wang S., Leski M., Yao Y.C., Yang X.D., Huang Q.J., Chen G.Q. The effect of 3-hydroxybutyrate methyl ester on learning and memory in mice. Biomaterials 2009; 30(8): 1532–1541,
  55. Zhang J., Cao Q., Li S., Lu X., Zhao Y., Guan J.S., Chen J.C., Wu Q., Chen G.Q. 3-hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 2013; 34(30): 7552–7562,
  56. Lehninger principles of biochemistry. 5th edition. Nelson D.L., Cox M.M. (editors). New York: W.H. Freeman and Company; 2008; p. 852–860.
  57. Saad B., Ciardelli G., Matter S., Welti M., Uhlschmid G.K., Neuenschwander P., Suter U.W. Degradable and highly porous polyesterurethane foam as biomaterial: effects and phagocytosis of degradation products in osteoblasts. J Biomed Mater Res 1998; 39(4): 594–602,;2-7.
  58. Ji Y., Li X.T., Chen G.Q. Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 2008; 29(28): 3807–3814,
  59. Yang X.D., Zou X.H., Dai Z.W., Luo R.C., Wei C.J., Chen G.Q. Effects of oligo(3-hydroxyalkanoates) on the viability and insulin secretion of murine beta cells. J Biomater Sci Polym Ed 2009; 20(12): 1729–1746,
  60. Torres M.G. Polyurethane/urea composite scaffolds based on poly(3-hydroxybutyrate-g-2-amino-ethyl methacrylate). Compos B Eng 2019; 160: 362–368,
  61. Reyes A.P., Martínez Torres A., Carreón Castro Mdel P., Rodríguez Talavera J.R., Muñoz S.V., Aguilar V.M., Torres M.G. Novel poly(3-hydroxybutyrate-g-vinyl alcohol) polyurethane scaffold for tissue engineering. Sci Rep 2016; 6: 31140,
  62. Torres M.G. 3D-composite scaffolds from radiation-induced chitosan grafted poly(3-hydroxybutyrate) polyurethane. Mater Today Commun 2020; 23: 100902,
  63. Daniel I.M., Ori I. Engineering mechanics of composite materials. 2nd edition. Oxford University Press; 2006.
  64. Sefat F., Mozafari M., Atala A. Introduction to tissue engineering scaffolds. In: Handbook of tissue engineering scaffolds: volume one. Elsevier; 2019, p. 3–22,
  65. Houben A., Van Hoorick J., Van Erps J., Thienpont H., Van Vlierberghe S., Dubruel P. Indirect rapid prototyping: opening up unprecedented opportunities in scaffold design and applications. Ann Biomed Eng 2017; 45(1): 58–83,
  66. Salvatore L., Carofiglio V.E., Stufano P., Bonfrate V., Calò E., Scarlino S., Nitti P., Centrone D., Cascione M., Leporatti S., Sannino A., Demitri C., Madaghiele M. Potential of electrospun poly(3-hydroxybutyrate)/collagen blends for tissue engineering applications. J Healthc Eng 2018; 2018: 6573947,
  67. Wang Z., Ma K., Jiang X., Xie J., Cai P., Li F., Liang R., Zhao J., Zheng L. Electrospun poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/octacalcium phosphate nanofibrous membranes for effective guided bone regeneration. Mater Sci Eng C Mater Biol Appl 2020; 112: 110763,
  68. Zhao K., Deng Y., Chun Chen J., Chen G.Q. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 2003; 24(6): 1041–1045,
  69. Saadat A., Behnamghader A., Karbasi S., Abedi D., Soleimani M., Shafiee A. Comparison of acellular and cellular bioactivity of poly 3-hydroxybutyrate/hydroxyapatite nanocomposite and poly 3-hydroxybutyrate scaffolds. Biotechnol Bioprocess Eng 2013; 18: 587–593,
  70. Hajiali H., Karbasi S., Hosseinalipour M., Rezaie H.R. Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. J Mater Sci Mater Med 2010; 21(7): 2125–2132,
  71. Hajiali H., Hosseinalipour M., Karbasi S., Shokrgozar M.A. The influence of bioglass nanoparticles on the biodegradation and biocompatibility of poly (3-hydroxybutyrate) scaffolds. Int J Artif Organs 2012; 35(11): 1015–1024,
  72. Iron R., Mehdikhani M., Naghashzargar E., Karbasi S., Semnani D. Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of poly (3-hydroxybutyrate) electrospun scaffold for bone tissue engineering applications. Mater Technol 2019; 34: 540–548,
  73. Ambrosio A.M.A., Sahota J.S., Khan Y., Laurencin C.T. A novel amorphous calcium phosphate polymer ceramic for bone repair: I. Synthesis and characterization. J Biomed Mater Res 2001; 58(3): 295–301,;2-8.
  74. Kim S.S., Ahn K.M., Park M.S., Lee J.H., Choi C.Y., Kim B.S. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res A 2007; 80(1): 206–215,
  75. Degli Esposti M., Chiellini F., Bondioli F., Morselli D., Fabbri P. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Mater Sci Eng C Mater Biol Appl 2019; 100: 286–296,
  76. Sarrami P., Karbasi S., Farahbakhsh Z., Bigham A., Rafienia M. Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications. Int J Biol Macromol 2022; 220: 1368–1389,
  77. González M., Merino U., Vargas S., Quintanilla F., Rodríguez R. Synthesis and characterization of a HAp-based biomarker with controlled drug release for breast cancer. Mater Sci Eng C Mater Biol Appl 2016; 61: 801–808,
  78. Luz G.M., Mano J.F. Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Compos Sci Technol 2010; 70(13): 1777–1788,
  79. Zhang X., Li J., Chen J., Peng Z.X., Chen J.N., Liu X., Wu F., Zhang P., Chen G.Q. Enhanced bone regeneration via PHA scaffolds coated with polydopamine-captured BMP2. J Mater Chem B 2022; 10(32): 6214–6227,
  80. Urban R.M., Jacobs J.J., Tomlinson M.J., Gavrilovic J., Black J., Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 2000; 82(4): 457–476,
  81. GOST ISO 10993-6—2011 “Izdeliya meditsinskie. Otsenka biologicheskogo deystviya meditsinskikh izdeliy. Chast’ 6. Issledovaniya mestnogo deystviya posle implantatsii” [GOST ISO 10993-6—2011 “Medical devices. Biological evaluation of medical devices. Part 6. Tests for local effects after implantation”]. 2013.
  82. Liu Y., Zhou Y., Feng H., Ma G.E., Ni Y. Injectable tissue-engineered bone composed of human adipose-derived stromal cells and platelet-rich plasma. Biomaterials 2008; 29(23): 3338–3345,
  83. Im J.Y., Min W.K., You C., Kim H.O., Jin H.K., Bae J.S. Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cells in scaffold. Lab Anim Res 2013;29(4): 196–203,
  84. Zhou Y.S., Liu Y.S., Tan J.G. Is 1, 25-dihydroxyvitamin D3 an ideal substitute for dexamethasone for inducing osteogenic differentiation of human adipose tissue-derived stromal cells in vitro? Chin Med J (Engl) 2006; 119(15): 1278–1286.
  85. Rentsch C., Rentsch B., Breier A., Hofmann A., Manthey S., Scharnweber D., Biewener A., Zwipp H. Evaluation of the osteogenic potential and vascularization of 3D poly(3)hydroxybutyrate scaffolds subcutaneously implanted in nude rats. J Biomed Mater Res A 2010; 92(1): 185–195,
  86. Mai R., Hagedorn M.G., Gelinsky M., Werner C., Turhani D., Späth H., Gedrange T., Lauer G. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs. J Craniomaxillofac Surg 2006; 34(Suppl 2): 101–109,
  87. Gredes T., Gedrange T., Hinüber C., Gelinsky M., Kunert-Keil C. Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration. Ann Anat 2015; 199: 36–42,
  88. Higuchi T., Kinoshita A., Takahashi K., Oda S., Ishikawa I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. An experimental model of defect filling. J Periodontol 1999; 70(9): 1026–1031,
  89. Virk M.S., Alaee F., Tang H., Ominsky M.S., Ke H.Z., Lieberman J.R. Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am 2013; 95(8): 694–701,
  90. Berner A., Boerckel J.D., Saifzadeh S., Steck R., Ren J., Vaquette C., Zhang J.Q., Nerlich M., Guldberg R.E., Hutmacher D.W., Woodruff M.A. Biomimetic tubular nanofiber mesh and platelet rich plasma-mediated delivery of BMP-7 for large bone defect regeneration. Cell Tissue Res 2012; 347(3): 603–612,
  91. Li W., Zara J.N., Siu R.K., Lee M., Aghaloo T., Zhang X., Wu B.M., Gertzman A.A., Ting K., Soo C. Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plast Reconstr Surg 2011; 127(2): 580–587,
  92. Feng W., Lv S., Cui J., Han X., Du J., Sun J., Wang K., Wang Z., Lu X., Guo J., Oda K., Amizuka N., Xu X., Li M. Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α,25(OH)2D3. Mater Sci Eng C Mater Biol Appl 2015; 54: 133–141,

Bonartsev A.P., Voinova V.V., Volkov A.V., Muraev A.A., Boyko E.M., Venediktov A.A., Didenko N.N., Dolgalev A.A. Scaffolds Based on Poly(3-Hydroxybutyrate) and Its Copolymers for Bone Tissue Engineering (Review). Sovremennye tehnologii v medicine 2022; 14(5): 78,

Journal in Databases