Сегодня: 17.07.2024
RU / EN
Последнее обновление: 01.07.2024
Система функциональной электрической стимуляции мышц для интеграции в экзоскелете

Система функциональной электрической стимуляции мышц для интеграции в экзоскелете

И.А. Кастальский, М.А. Хоружко, Д.В. Скворцов
Ключевые слова: функциональная электростимуляция; реабилитация; экзоскелет; поражение опорно-двигательной системы.
2018, том 10, номер 3, стр. 104.

Полный текст статьи

html pdf
2366
1805

Экзоскелетов с интегрированной системой функциональной электростимуляции (ФЭС), за исключением стационарных систем, в настоящее время на медицинском рынке не представлено.

Цель исследования — разработать систему ФЭС, которая изначально может быть интегрирована в экзоскелет нижних конечностей для обеспечения наилучшей совместимости и синхронизации ее работы с узлами экзоскелета при совершении пациентом движений.

Результаты. Разработана система ФЭС и подход для ее интеграции непосредственно в экзоскелетонное устройство. ФЭС предусматривает одновременную работу от 2 до 4 каналов стимуляции, каждый из которых поддерживает установку параметров сигнала (частоты, амплитуды, длительности). Время включения и выключения стимуляции зависит от фазы шага, определяемой алгоритмом классификации походки. Наличие синхросигналов для левой и правой стороны обеспечивает согласованную работу ФЭС на обеих нижних конечностях пациента. Область применения экзоскелета с интегрированной системой ФЭС — медицинская реабилитация.

  1. Hill D., Holloway C.S., Morgado Ramirez D.Z., Smitham P., Pappas Y. What are user perspectives of exoskeleton technology? A literature review. Int J Technol Assess Health Care 2017; 33(2): 160–167, https://doi.org/10.1017/s0266462317000460.
  2. Fukaya T., Mutsuzaki H., Yoshikawa K., Sano A., Mizukami M., Yamazaki M. The training effect of early intervention with a hybrid assistive limb after total knee arthroplasty. Case Rep Orthop 2017; 2017: 6912706, https://doi.org/10.1155/2017/6912706.
  3. McGibbon C.A., Brandon S.C.E., Brookshaw M., Sexton A. Effects of an over-ground exoskeleton on external knee moments during stance phase of gait in healthy adults. Knee 2017; 24(5): 977–993, https://doi.org/10.1016/j.knee.2017.04.004.
  4. Thrasher T.A., Popovic M.R. Functional electrical stimulation of walking: function, exercise and rehabilitation. Ann Readapt Med Phys 2008; 51(6): 452–460, https://doi.org/10.1016/j.annrmp.2008.05.006.
  5. Dimitrijevic M.M., Dimitrijevic M.R. Clinical elements for the neuromuscular stimulation and functional electrical stimulation protocols in the practice of neurorehabilitation. Artif Organs 2002; 26(3): 256–259, https://doi.org/10.1046/j.1525-1594.2002.06946.x.
  6. Bijak M., Rakos M., Hofer C., Mayr W., Strohhofer M., Raschka D. Stimulation parameter optimization for FES supported standing up and walking in SCI patients. Artif Organs 2005; 29(3): 220–223, https://doi.org/10.1111/j.1525-1594.2005.29039.x.
  7. Matjacic Z., Bajd T. Arm-free paraplegic standing — part II: experimental results. IEEE Trans Rehabil Eng 1998; 6(2): 139–150, https://doi.org/10.1109/86.681179.
  8. Holderbaum W., Hunt K.J., Gollee H. H∞ robust control design for unsupported paraplegic standing: experimental evaluation. Control Eng Pract 2002; 10(11): 1211–1222, https://doi.org/10.1016/S0967-0661(02)00082-5.
  9. Thrasher T.A., Flett H.E., Popovic M.R. Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord 2006; 44(6): 357–361, https://doi.org/10.1038/sj.sc.3101864.
  10. Kralj A., Bajd T., Turk R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin Orthop Relat Res 1988; 1998(233): 34–43, https://doi.org/10.1097/00003086-198808000-00006.
  11. Graupe D., Davis R., Kordylewski H., Kohn K.H. Ambulation by traumatic T4-12 paraplegics using functional neuromuscular stimulation. Crit Rev Neurosurg 1998; 8(4): 221–231, https://doi.org/10.1007/s003290050081.
  12. Mazzoleni S., Battini E., Rustici A., Stampacchia G. An integrated gait rehabilitation training based on functional electrical stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. IEEE Int Conf Rehabil Robot 2017; 2017: 289–293, https://doi.org/10.1109/icorr.2017.8009261.
  13. Ha K.H., Murray S.A., Goldfarb M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans Neural Syst Rehabil Eng 2016; 24(4): 455–466, https://doi.org/10.1109/TNSRE.2015.2421052.
  14. Alibeji N.A., Kirsch N.A., Sharma N. A muscle synergy-inspired adaptive control scheme for a hybrid walking neuroprosthesis. Front Bioeng Biotechnol 2015; 3: 203, https://doi.org/10.3389/fbioe.2015.00203.
  15. del-Ama A.J., Gil-Agudo A., Pons J.L., Moreno J.C. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J Neuroeng Rehabil 2014; 11(1): 27, https://doi.org/10.1186/1743-0003-11-27.
  16. Ha K.H., Quintero H.A., Farris R.J., Goldfarb M. Enhancing stance phase propulsion during level walking by combining FES with a powered exoskeleton for persons with paraplegia. Conf Proc IEEE Eng Med Biol Soc 2012; 2012: 344–347, https://doi.org/10.1109/embc.2012.6345939.
  17. Chang S.R., Kobetic R., Audu M.L., Quinn R.D., Triolo R.J. Powered lower-limb exoskeletons to restore gait for individuals with paraplegia — a review. Case Orthop J 2015; 12(1): 75–80.
  18. Chang S.R., Nandor M.J., Li L., Kobetic R., Foglyano K.M., Schnellenberger J.R., Audu M.L., Pinault G., Quinn R.D., Triolo R.J. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. J Neuroeng Rehabil 2017; 14(1): 48, https://doi.org/10.1186/s12984-017-0258-6.
  19. Витензон А.С., Петрушанская К.А., Скворцов Д.В. Руко­водство по применению метода искусственной коррекции ходьбы и ритмических движений посредством программируемой электростимуляции мышц. М; 2004; 284 с.
  20. Mineev S.A., Novikov V.A., Kuzmina I.V., Shatalin R.A., Grin I.V. Goniometric sensor interface for exoskeleton system control device. Biomed Eng 2016; 49(6): 357–361, https://doi.org/10.1007/s10527-016-9566-6.
Kаstalskiy I.А., Khoruzhko М.А., Skvortsov D.V. A Functional Electrical Stimulation System for Integration in an Exoskeleton. Sovremennye tehnologii v medicine 2018; 10(3): 104, https://doi.org/10.17691/stm2018.10.3.12


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg