Сегодня: 18.07.2024
RU / EN
Последнее обновление: 01.07.2024
Микродиализ: возможности и перспективы метода при трансплантации печени (обзор)

Микродиализ: возможности и перспективы метода при трансплантации печени (обзор)

А.И. Сушков, С.Э. Восканян, К.К. Губарев
Ключевые слова: трансплантация органов; трансплантация печени; микродиализ; глюкоза; лактат; пируват; глицерол.
2018, том 10, номер 3, стр. 184.

Полный текст статьи

html pdf
2002
1722

Оценка качества донорского органа и начальной функции трансплантата имеет принципиальное значение, особенно при пересадке печени. Исследования последних лет показали возможность использования микродиализа для мониторинга состояния энергетического обмена в пересаженных почке и печени. Этот метод позволяет определять концентрации веществ, растворенных во внеклеточной жидкости трансплантата, и регистрировать их изменения еще до того, как это отразится на показателях периферической крови. В настоящее время наиболее часто микродиализ применяется в неврологии и нейрохирургии для оценки объема и тяжести повреждения вещества головного мозга. Использование метода для изучения механизмов ишемического и реперфузионного повреждения трансплантата и процессов, протекающих при развитии его ранней дисфункции, представляется перспективным направлением исследований.

В данном обзоре представлены результаты экспериментальных и клинических работ, обсуждаются целесообразность и перспективы микродиализного мониторинга при трансплантации печени.

  1. Jadlowiec C.C., Taner T. Liver transplantation: current status and challenges. World J Gastroenterol 2016; 22(18): 4438–4445, https://doi.org/10.3748/wjg.v22.i18.4438.
  2. Nemes B., Gámán G., Polak W.G., Gelley F., Hara T., Ono S., Baimakhanov Z., Piros L., Eguchi S. Extended-criteria donors in liver transplantation. Part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert Rev Gastroenterol Hepatol 2016; 10(7): 841–859, https://doi.org/10.1586/17474124.2016.1149062.
  3. Kwong A.J., Fix O.K. Update on the management of the liver transplant patient. Curr Opin Gastroenterol 2015; 31(3): 224–232, https://doi.org/10.1097/mog.0000000000000173.
  4. Chen X.B., Xu M.Q. Primary graft dysfunction after liver transplantation. Hepatobiliary Pancreat Dis Int 2014; 13(2): 125–137, https://doi.org/10.1016/s1499-3872(14)60023-0.
  5. United Network For Organ Sharing. United Network for Organ Sharing Liver Disease Severity Score Committee. 2014. URL: www.unos.org .
  6. Stockmann M., Lock J.F., Malinowski M., Seehofer D., Puhl G., Pratschke J., Neuhaus P. How to define initial poor graft function after liver transplantation? — a new functional definition by the LiMAx test. Transpl Int 2010; 23(10): 102310–102332, https://doi.org/10.1111/j.1432-2277.2010.01089.x.
  7. Lock J.F., Schwabauer E., Martus P., Videv N., Pratschke J., Malinowski M., Neuhaus P., Stockmann M. Early diagnosis of primary nonfunction and indication for reoperation after liver transplantation. Liver Transpl 2010; 16(2): 172–180, https://doi.org/10.1002/lt.21973.
  8. Levesque E., Saliba F., Benhamida S., Ichaï P., Azoulay D., Adam R., Castaing D., Samuel D. Plasma disappearance rate of indocyanine green: a tool to evaluate early graft outcome after liver transplantation. Liver Transpl 2009; 15(10): 1358–1364, https://doi.org/10.1002/lt.21805.
  9. De Gasperi A., Mazza E., Prosperi M. Indocyanine green kinetics to assess liver function: ready for a clinical dynamic assessment in major liver surgery? World J Hepatol 2016; 8(7): 355–367, https://doi.org/10.4254/wjh.v8.i7.355.
  10. Ramsay M. Role of microdialysis catheters in clinical decision making: bench to bedside? Liver Transpl 2013; 19(3): 243–235, https://doi.org/10.1002/lt.23602.
  11. Bito L., Davson H., Levin E., Murray M., Snider N. The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 1966; 13(11): 1057–1067, https://doi.org/10.1111/j.1471-4159.1966.tb04265.x.
  12. Delgado J.M., DeFeudis F.V., Roth R.H., Ryugo D.K., Mitruka B.M. Dialytrode for long term intracerebral perfusion in awake monkeys. Arch Int Pharmacodyn Ther 1972; 198(1): 9–21.
  13. Lönnroth P., Jansson P.A., Smith U. A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 1987; 253(2): E228–E231, https://doi.org/10.1152/ajpendo.1987.253.2.e228.
  14. Hutchinson P.J., O’Connell M.T., al-Rawi P.G., Kett-White R., Gupta A.K., Kirkpatrick P.J., Pickard J.D. Clinical cerebral microdialysis — determining the true extracellular concentration. Acta Neurochir Suppl 2002; 81: 359–362, https://doi.org/10.1007/978-3-7091-6738-0_91.
  15. Bruinsma B.G., Avruch J.H., Sridharan G.V., Weeder P.D., Jacobs M.L., Crisalli K., Amundsen B., Porte R.J., Markmann J.F., Uygun K., Yeh H. Peritransplant energy changes and their correlation to outcome after human liver transplantation. Transplantation 2017; 101(7): 1637–1644, https://doi.org/10.1097/tp.0000000000001699.
  16. Wahlberg J., Eklund T., Hillered L. Comparison of energy metabolism in rat liver grafts during preservation in University of Wisconsin or Euro-Collins solutions. Transplant Proc 1995; 27(1): 721–723.
  17. Tian Yh., Fukuda C., Schilling M.K. Interstitial accumulation of Na+ and K+ during flush-out and cold storage of rat livers: implications for graft survival. Hepatology 1998; 28(5): 1327–1331, https://doi.org/10.1002/hep.510280522.
  18. Nowak G., Ungerstedt J., Wernerman J., Ungerstedt U., Ericzon B.G. Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl 2002; 8(5): 424–432, https://doi.org/10.1053/jlts.2002.32943.
  19. Gillispie A., Rooyackers O., Wernerman J., Nowak G. Effect of extended cold ischemia time on glucose metabolism in liver grafts: experimental study in pigs. J Hepatobiliary Pancreat Surg 2007; 14(2): 183–188, https://doi.org/10.1007/s00534-006-1127-z.
  20. Nagayama M., Katsuramaki T., Kimura H., Isobe M., Meguro M., Matsuno T., Nui A., Hirata K. Prediction of graft viability from non-heart-beating donor pigs using hepatic microdialysate hypoxanthine levels. J Surg Res 2002; 107(2): 210–218, https://doi.org/10.1006/jsre.2002.6514.
  21. Nowak G., Ungerstedt J., Wernerman J., Ungerstedt U., Ericzon B.G. Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation. Br J Surg 2002; 89(9): 1169–1175, https://doi.org/10.1046/j.1365-2168.2002.02187.x.
  22. Nowak G., Ungerstedt J., Wernerson A., Ungerstedt U., Ericzon B.G. Hepatic cell membrane damage during cold preservation sensitizes liver grafts to rewarming injury. J Hepatobiliary Pancreat Surg 2003; 10(3): 200–205, https://doi.org/10.1007/s00534-002-0760-4.
  23. Silva M.A., Richards D.A., Bramhall S.R., Adams D.H., Mirza D.F., Murphy N. A study of the metabolites of ischemia-reperfusion injury and selected amino acids in the liver using microdialysis during transplantation. Transplantation 2005; 79(7): 828–835,https://doi.org/10.1097/01.tp.0000153156.38617.97.
  24. Silva M.A., Murphy N., Richards D.A., Wigmore S.J., Bramhall S.R., Buckels J.A., Adams D.H., Mirza D.F. Interstitial lactic acidosis in the graft during organ harvest, cold storage, and reperfusion of human liver allografts predicts subsequent ischemia reperfusion injury. Transplantation 2006; 82(2): 227–233, https://doi.org/10.1097/01.tp.0000226234.76036.c1.
  25. Silva M.A., Mirza D.F., Buckels J.A., Bramhall S.R., Mayer D., Wigmore S.J., Murphy N., Richards D.A. Arginine and urea metabolism in the liver graft: a study using microdialysis in human orthotopic liver transplantation. Transplantation 2006; 82(10): 1304–1311, https://doi.org/10.1097/01.tp.0000241099.93794.d6.
  26. Richards D.A., Silva M.A., Murphy N., Wigmore S.J., Mirza D.F. Extracellular amino acid levels in the human liver during transplantation: a microdialysis study from donor to recipient. Amino Acids 2007; 33(3): 429–437, https://doi.org/10.1007/s00726-006-0480-1.
  27. Silva M.A., Mirza D.F., Murphy N., Richards D.A., Reynolds G.M., Wigmore S.J., Neil D.A. Intrahepatic complement activation, sinusoidal endothelial injury, and lactic acidosis are associated with initial poor function of the liver after transplantation. Transplantation 2008; 85(5): 718–725, https://doi.org/10.1097/tp.0b013e3181663366.
  28. Waelgaard L., Thorgersen E.B., Line P.D., Foss A., Mollnes T.E., Tønnessen T.I. Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation 2008; 86(8): 1096–1103, https://doi.org/10.1097/tp.0b013e31818775ca.
  29. Haugaa H., Thorgersen E.B., Pharo A., Boberg K.M., Foss A., Line P.D., Sanengen T., Almaas R., Grindheim G., Pischke S.E., Mollnes T.E., Tønnessen T.I. Early bedside detection of ischemia and rejection in liver transplants by microdialysis. Liver Transpl 2012; 18(7): 839–849, https://doi.org/10.1002/lt.23425.
  30. Haugaa H., Thorgersen E.B., Pharo A., Boberg K.M., Foss A., Line P.D., Sanengen T., Almaas R., Grindheim G., Waelgaard L., Pischke S.E., Mollnes T.E., Inge Tønnessen T. Inflammatory markers sampled by microdialysis catheters distinguish rejection from ischemia in liver grafts. Liver Transpl 2012; 18(12): 1421–1429, https://doi.org/10.1002/lt.23503.
  31. Haugaa H., Almaas R., Thorgersen E.B., Foss A., Line P.D., Sanengen T., Bergmann G.B., Ohlin P., Waelgaard L., Grindheim G., Pischke S.E., Mollnes T.E., Tønnessen T.I. Clinical experience with microdialysis catheters in pediatric liver transplants. Liver Transpl 2013; 19(3): 305–314, https://doi.org/10.1002/lt.23578.
  32. Baicu S.C., Simmons P.M., Campbell L.H., Taylor M.J., Brockbank K.G. Interstitial fluid analysis for assessment of organ function. Clin Transplant 2004; 18(Suppl 12): 16–21, https://doi.org/10.1111/j.1399-0012.2004.00212.
  33. Keller A.K., Jorgensen T.M., Olsen L.H., Stolle L.B. Detection of local metabolic changes after progressive and stepwise reduction of renal blood flow in pigs. Transplant Proc 2009; 41(1): 44–48, https://doi.org/10.1016/j.transproceed.2008.10.089.
  34. Keller A.K., Jorgensen T.M., Ravlo K., Nielsen T.K., Olsen L.H., Stolle L.B. Microdialysis for detection of renal ischemia after experimental renal transplantation. J Urol 2009; 182(4 Suppl): 1854–1859, https://doi.org/10.1016/j.juro.2009.03.015.
  35. Keller A.K., Jorgensen T.M., Vittrup D.M., Kjerkegaard U.K., Jespersen B., Krag S.R., Bibby B.M., Stolle L.B. Fast detection of renal ischemia in transplanted kidneys with delayed graft function-an experimental study. Transplantation 2013; 95(2): 275–279, https://doi.org/10.1097/tp.0b013e318276a1c8.
  36. Keller A.K., Kierulf-Lassen C., Møldrup U., Bibby B.M., Jespersen B. Messengers of renal graft quality during warm and cold ischemia: a porcine microdialysis study. Transplant Proc 2013; 45(3): 1172–1177, https://doi.org/10.1016/j.transproceed.2012.10.014.
  37. Amdisen C., Jespersen B., Møldrup U., Keller A.K. The unsuitability of implantable Doppler probes for the early detection of renal vascular complications — a porcine model for prevention of renal transplant loss. PLoS One 2017; 12(5): e0178301, https://doi.org/10.1371/journal.pone.0178301.
  38. Fonouni H., Tahmasbi Rad M., Golriz M., Faridar A., Esmaeilzadeh M., Jarahian P., Hafezi M., Jafarieh S., Macher-Goeppinger S., Longerich T., Orakcioglu B., Sakowitz O., Schmidt J., Mehrabi A. Using microdialysis for early detection of vascular thrombosis after kidney transplantation in an experimental porcine model. Nephrol Dial Transplant 2012; 27(2): 541–547, https://doi.org/10.1093/ndt/gfr308.
  39. Fonouni H., Esmaeilzadeh M., Jarahian P., Rad M.T., Golriz M., Faridar A., Hafezi M., Jafarieh S., Kashfi A., Yazdi S.H., Soleimani M., Longerich T., Shevchenko M., Sakowitz O., Schmidt J., Mehrabi A. Early detection of metabolic changes using microdialysis during and after experimental kidney transplantation in a porcine model. Surg Innov 2011; 18(4): 321–328, https://doi.org/10.1177/1553350610392063.
  40. Fonouni H., Jarahian P., Rad M.T., Golriz M., Faridar A., Esmaeilzadeh M., Hafezi M., Macher-Goeppinger S., Longerich T., Orakcioglu B., Sakowitz O.W., Garoussi C., Mehrabi A. Evaluating the effects of extended cold ischemia on interstitial metabolite in grafts in kidney transplantation using microdialysis. Langenbecks Arch Surg 2013; 398(1): 87–97, https://doi.org/10.1007/s00423-012-1010-0.
  41. Fonouni H., Golriz M., Majlesara A., Faridar A., Esmaeilzadeh M., Jarahian P., Rad M.T., Hafezi M., Garoussi C., Macher-Goeppinger S., Longerich T., Orakcioglu B., Sakowitz O.W., Mehrabi A. Is microdialysis useful for early detection of acute rejection after kidney transplantation? Int J Surg 2015; 18: 88–94, https://doi.org/10.1016/j.ijsu.2015.03.024.
  42. Hamaoui K., Gowers S., Damji S., Rogers M., Leong C.L., Hanna G., Darzi A., Boutelle M., Papalois V. Rapid sampling microdialysis as a novel tool for parenchyma assessment during static cold storage and hypothermic machine perfusion in a translational ex vivo porcine kidney model. J Surg Res 2016; 200(1): 332–345, https://doi.org/10.1016/j.jss.2015.07.004.
  43. Хубутия М.Ш., Журавель С.В., Козлов И.А., Рома­нов А.А., Гончарова И.И. Микродиализ — новый метод мони­торинга функции трансплантированной трупной почки. Анестезиология и реаниматология 2015; 60(1): 69–72.
Sushkov А.I., Voskanyan S.E., Gubarev К.К. Microdialysis: Opportunities and Prospects in Liver Transplantation (Review). Sovremennye tehnologii v medicine 2018; 10(3): 184, https://doi.org/10.17691/stm2018.10.3.23


Журнал базах данных

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg