Today: Nov 1, 2025
RU / EN
Last update: Oct 30, 2025
Genetic Scale for Predicting the No-Reflow Phenomenon in Myocardial Infarction

Genetic Scale for Predicting the No-Reflow Phenomenon in Myocardial Infarction

Pochinka I.G., Frolov A.A., Kuzmichev K.V., Shchelchkova N.A., Pershin V.I., Maximova N.S., Budkina M.L., Predeina I.V., Frolov I.A., Kashtanov M.G.
Key words: myocardial infarction; no-reflow phenomenon; percutaneous coronary intervention; single nucleotide polymorphism.
2025, volume 17, issue 5, page 74.

Full text

html pdf
34
34

The aim of the study is to investigate the association of the selected single nucleotide polymorphisms (SNPs) with the development of the no-reflow phenomenon during percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) and to create a genetic scale for predicting this complication.

Materials and Methods. A single-center matched case–control study was conducted. The study included 80 STEMI patients: 40 (50%) with no-reflow and 40 (50%) without no-reflow (1:1 matching by sex and age). No-reflow was defined as TIMI flow grade <3 or Myocardial blush grade <2 after PCI. The following SNPs were assessed: rs4961 (ADD1), rs699 and rs4762 (AGT), rs5186 (AGTR1), rs1403543 (AGTR2), rs1799998 (CYP11B2), rs5443 (GNB3), rs2070744 and rs1799983 (eNOS), rs5370 (EDN1), rs1799963 (F2), rs6025 (F5), rs6046 (F7), rs5985 (F13), rs1800790 (FGB), rs1126643 (ITGA2), rs5918 (ITGB3), rs1799762 (PAI-1), rs1801133 and rs1801131 (MTHFR), rs1805087 (MTR), and rs1801394 (MTRR).

Results. The following SNPs were associated with the development of the no-reflow phenomenon: rs4961 (genotype GT or TT) in the ADD1 gene, rs1799998 (CC) in the CYP11B2 gene, and rs1801133 (CC) in the MTHFR gene (p<0.05, McNemar’s test). These SNPs were combined into a genetic prognostic scale, where 1 point was assigned for each genotype associated with no-reflow. The positive predictive value for the maximum score (3 points) was 0.91. The area under the ROC curve was 0.724 (0.611–0.838). The odds ratio for no-reflow development was 5.39 (1.09–26.66) per point (p=0.04; multivariate analysis using conditional logistic regression).

  1. Byrne R.A., Rossello X., Coughlan J.J., Barbato E., Berry C., Chieffo A., Claeys M.J., Dan G.A., Dweck M.R., Galbraith M., Gilard M., Hinterbuchner L., Jankowska E.A., Jüni P., Kimura T., Kunadian V., Leosdottir M., Lorusso R., Pedretti R.F.E., Rigopoulos A.G., Rubini Gimenez M., Thiele H., Vranckx P., Wassmann S., Wenger N.K., Ibanez B.; ESC Scientific Document Group. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 2023; 44(38): 3720–3826, https://doi.org/10.1093/eurheartj/ehad191.
  2. Ciofani J.L., Allahwala U.K., Scarsini R., Ekmejian A., Banning A.P., Bhindi R., De Maria G.L. No-reflow phenomenon in ST-segment elevation myocardial infarction: still the Achilles’ heel of the interventionalist. Future Cardiol 2021; 17(2): 383–397, https://doi.org/10.2217/fca-2020-0077.
  3. Kaur G., Baghdasaryan P., Natarajan B., Sethi P., Mukherjee A., Varadarajan P., Pai R.G. Pathophysiology, diagnosis, and management of coronary no-reflow phenomenon. Int J Angiol 2021; 30(1): 15–21, https://doi.org/10.1055/s-0041-1725979.
  4. Wang J.W., Zhou Z.Q., Chen Y.D., Wang C.H., Zhu X.L. A risk score for no reflow in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. Clin Cardiol 2015; 38(4): 208–215, https://doi.org/10.1002/clc.22376.
  5. Gupta A., Habung H., Kaur N., Batra A., Gupta A., Doomra M., Thakur P., Mahajan K. Current concepts in the pathogenesis and management of coronary no-reflow phenomenon. BOHR International Journal of General and Internal Medicine 2022; 1(1): 54–58, https://doi.org/10.54646/bijgim.011.
  6. Xiao Y., Fu X., Wang Y., Wu Y., Wang W., Zhang Q. Development and validation of risk nomogram model predicting coronary microvascular obstruction in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous catheterization. Med Sci Monit 2019; 25: 5864–5877, https://doi.org/10.12659/MSM.915960.
  7. Bessonov I.S., Kuznetsov V.A., Gorbatenko E.A., Zyrianov I.P., Sapozhnikov S.S., Dyakova A.O. Direct stenting in patients with ST-elevation myocardial infarction and hyperglycemia. Patologiya krovoobrashcheniya i kardiokhirurgiya 2019; 23(1S): S44–S51, https://doi.org/10.21688/1681-3472-2019-1S-S44-S52.
  8. Xu H., Song C., Xu B., Yin D., Zhu C., Feng L., Zhang D., Gao G., Song W., Qiao S., Wang Y., Li S., Yang Y., Dou K. A scoring system to predict no-reflow phenomenon in elective percutaneous coronary intervention: the RECOVER score. Curr Probl Cardiol 2021; 46(3): 100676, https://doi.org/10.1016/j.cpcardiol.2020.100676.
  9. Dai C., Liu M., Zhou Y., Lu D., Li C., Chang S., Chen Z., Qian J., Ge J. A score system to predict no-reflow in primary percutaneous coronary intervention: the PIANO score. Eur J Clin Invest 2022; 52(2): e13686, https://doi.org/10.1111/eci.13686.
  10. Yoshino S., Cilluffo R., Best P.J., Atkinson E.J., Aoki T., Cunningham J.M., de Andrade M., Choi B.J., Lerman L.O., Lerman A. Single nucleotide polymorphisms associated with abnormal coronary microvascular function. Coron Artery Dis 2014; 25(4): 281–289, https://doi.org/10.1097/MCA.0000000000000104.
  11. Dharma S., Sari N.Y., Parlautan A., Sukmawan R., Wijaya S., Ekawati E., Santoso A. The 3q25 rs2305619 polymorphism is associated with coronary microvascular obstruction following primary angioplasty for acute ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 2019; 12(12): e008228, https://doi.org/10.1161/CIRCINTERVENTIONS.119.008228.
  12. Fracassi F., Niccoli G., Vetrugno V., Cauteruccio M., Buffon A., Gatto I., Giarretta I., Tondi P., Pola R., Crea F. The 9p21 Rs 1333040 polymorphism is associated with coronary microvascular obstruction in ST-segment elevation myocardial infarction treated by primary angioplasty. Eur Heart J Acute Cardiovasc Care 2019; 8(8): 703–707, https://doi.org/10.1177/2048872617735808.
  13. Konijnenberg L.S.F., Damman P., Duncker D.J., Kloner R.A., Nijveldt R., van Geuns R.M., Berry C., Riksen N.P., Escaned J., van Royen N. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res 2020; 116(4): 787–805, https://doi.org/10.1093/cvr/cvz301.
  14. Niccoli G., Montone R.A., Ibanez B., Thiele H., Crea F., Heusch G., Bulluck H., Hausenloy D.J., Berry C., Stiermaier T., Camici P.G., Eitel I. Optimized treatment of ST-elevation myocardial infarction. Circ Res 2019; 125(2): 245–258, https://doi.org/10.1161/CIRCRESAHA.119.315344.
  15. TIMI Study Group. The thrombolysis in myocardial infarction (TIMI) trial. Phase I findings. N Engl J Med 1985; 312(14): 932–936, https://doi.org/10.1056/NEJM198504043121437.
  16. van‘t Hof A.W., Liem A., Suryapranata H., Hoorntje J.C., de Boer M.J., Zijlstra F. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation 1998; 97(23): 2302–2306, https://doi.org/10.1161/01.cir.97.23.2302.
  17. Rentrop K.P., Feit F., Sherman W., Thornton J.C. Serial angiographic assessment of coronary artery obstruction and collateral flow in acute myocardial infarction. Report from the second Mount Sinai-New York University Reperfusion Trial. Circulation 1989; 80(5): 1166–1175, https://doi.org/10.1161/01.cir.80.5.1166.
  18. Killip T. 3rd, Kimball J.T. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am J Cardiol 1967; 20(4): 457–464, https://doi.org/10.1016/0002-9149(67)90023-9.
  19. Sianos G., Papafaklis M.I., Serruys P.W. Angiographic thrombus burden classification in patients with ST-segment elevation myocardial infarction treated with percutaneous coronary intervention. J Invasive Cardiol 2010; 22(10 Suppl B): 6B–14B.
  20. Austin P.C., White I.R., Lee D.S., van Buuren S. Missing data in clinical research: a tutorial on multiple imputation. Can J Cardiol 2021; 37(9): 1322–1331, https://doi.org/10.1016/j.cjca.2020.11.010.
  21. Pochinka I.G., Shchelchkova N.A., Frolov A.A., Pershin V.I., Maksimova N.S., Kuzmichev R.V., Budkina M.L., Predeina I.V. Method of diagnosing genetic predisposition to development of phenomenon of coronary microvascular obstruction during percutaneous coronary interventions in patients with myocardial infarction with ST segment elevation. Patent RU 2 811 933. 2023.
  22. Moztarzadeh S., Radeva M.Y., Sepic S., Schuster K., Hamad I., Waschke J., García-Ponce A. Lack of adducin impairs the stability of endothelial adherens and tight junctions and may be required for cAMP-Rac1-mediated endothelial barrier stabilization. Sci Rep 2022; 12(1): 14940, https://doi.org/10.1038/s41598-022-18964-5.
  23. Jin H., Huang Y., Yang G. Association between α-adducin rs4961 polymorphism and hypertension: a meta-analysis based on 40 432 subjects. J Cell Biochem 2019; 120(3): 4613–4619, https://doi.org/10.1002/jcb.27749.
  24. Bress A., Han J., Patel S.R., Desai A.A., Mansour I., Groo V., Progar K., Shah E., Stamos T.D., Wing C., Garcia J.G., Kittles R., Cavallari L.H. Association of aldosterone synthase polymorphism (CYP11B2 -344T>C) and genetic ancestry with atrial fibrillation and serum aldosterone in African Americans with heart failure. PLoS One 2013; 8(7): e71268, https://doi.org/10.1371/journal.pone.0071268.
  25. Nouhi Y., Aboubakr F.Z., Brini O.E., Benazzouz B., Akhouayri O. Association of combined -344T/C and K173R polymorphisms in aldosterone synthase gene with type 2 diabetes mellitus in the Moroccan population. Rom J Intern Med 2024; 62(3): 323–330, https://doi.org/10.2478/rjim-2024-0011.
  26. Samii A., Aslani S., Imani D., Razi B., Samaneh Tabaee S., Jamialahmadi T., Sahebkar A. MTHFR gene polymorphisms and susceptibility to myocardial infarction: evidence from meta-analysis and trial sequential analysis. IJC Heart & Vasculature 2023; 49: 101293, https://doi.org/10.1016/j.ijcha.2023.101293.
  27. Yu H., Wang B.B., Zhao M., Feng F., Li H.D. Homocysteine levels in patients with coronary slow flow phenomenon: a meta-analysis. PLoS One 2023; 18(7): e0288036, https://doi.org/10.1371/journal.pone.0288036.
  28. Mallhi T.H., Shahid M., Rehman K., Khan Y.H., Alanazi A.S., Alotaibi N.H., Akash M.S.H., Butt M.H. Biochemical association of MTHFR C677T polymorphism with myocardial infarction in the presence of diabetes mellitus as a risk factor. Metabolites 2023; 13(2): 251, https://doi.org/10.3390/metabo13020251.
  29. Tang O., Wu J., Qin F. Relationship between methylenetetrahydrofolate reductase gene polymorphism and the coronary slow flow phenomenon. Coron Artery Dis 2014; 25(8): 653–657, https://doi.org/10.1097/MCA.0000000000000151.
  30. Hmimech W., Idrissi H.H., Diakite B., Baghdadi D., Korchi F., Habbal R., Nadifi S. Association of C677T MTHFR and G20210A FII prothrombin polymorphisms with susceptibility to myocardial infarction. Biomedical Reports 2016; 5(3): 361–366, https://doi.org/10.3892/br.2016.717.
  31. Verdoia M., Schaffer A., Cassetti E., Barbieri L., Di Giovine G., Marino P., De Luca G.; Novara Atherosclerosis Study Group (NAS). MTHFR polymorphism and risk of periprocedural myocardial infarction after coronary stenting. Nutr Metab Cardiovasc Dis 2014; 24(5): 532–537, https://doi.org/10.1016/j.numecd.2013.10.027.
  32. Dribnokhodova O.P., Korchagin V.I., Mironov K.O., Dunaeva E.A., Titkov A.V., Akselrod E.V., Raskurazhev A.A., Tanashyan M.M., Illarioshkin S.N., Platonov A.E., Shipulin G.A. A comparative analysis of allele frequencies of rs1801133 and rs1801131 of MTHFR in patients with stroke and healthy people from the Moscow region. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2019; 119(3–2): 18–23, https://doi.org/10.17116/jnevro201911903218.
  33. Evrengul H., Tanriverdi H., Kuru O., Enli Y., Yuksel D., Kilic A., Kaftan A., Kirac S., Kilic M. Elevated homocysteine levels in patients with slow coronary flow: relationship with Helicobacter pylori infection. Helicobacter 2007; 12(4): 298–305, https://doi.org/10.1111/j.1523-5378.2007.00505.x.
  34. Wärme J., Sundqvist M.O., Hjort M., Agewall S., Collste O., Ekenbäck C., Frick M., Henareh L., Hofman-Bang C., Spaak J., Sörensson P., Y-Hassan S., Svensson P., Lindahl B., Hofmann R., Tornvall P. Helicobacter pylori and pro-inflammatory protein biomarkers in myocardial infarction with and without obstructive coronary artery disease. Int J Mol Sci 2023; 24(18): 14143, https://doi.org/10.3390/ijms241814143.
  35. Oliveira A.P.G., de Matos G.C.B., Vieira M.C.D.S., Corvelo T.C.O. Retrospective cohort study of the MTHFR C677T/A1298C polymorphisms and human homocysteine levels in Helicobacter pylori infection. Diagn Microbiol Infect Dis 2024; 109(3): 116243, https://doi.org/10.1016/j.diagmicrobio.2024.116243.
  36. Jain K.K. Personalized management of cardiovascular disorders. Med Princ Pract 2017; 26(5): 399–414, https://doi.org/10.1159/000481403.
Pochinka I.G., Frolov A.A., Kuzmichev K.V., Shchelchkova N.A., Pershin V.I., Maximova N.S., Budkina M.L., Predeina I.V., Frolov I.A., Kashtanov M.G. Genetic Scale for Predicting the No-Reflow Phenomenon in Myocardial Infarction. Sovremennye tehnologii v medicine 2025; 17(5): 74, https://doi.org/10.17691/stm2025.17.5.05


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank