Today: Dec 7, 2024
RU / EN
Last update: Oct 30, 2024
The Use of Optogenetic and DREADDs Techniques: Applications  to the Behavioral Pathology in Parkinson’s Disease (Review)

The Use of Optogenetic and DREADDs Techniques: Applications to the Behavioral Pathology in Parkinson’s Disease (Review)

Novikov N.I., Brazhnik E.S., Kichigina V.F.
Key words: Parkinson’s disease; movement disorders; basal ganglia; dopamine; light-sensitive ion channels; modified G-protein-coupled receptors.
2019, volume 11, issue 2, page 150.

Full text

html pdf
2582
1752

Recent advances in genetics have led to the development of novel optogenetic and chemogenetic tools that allow selective and remote interrogation of neural circuits using light-sensitive opsins and engineered G-protein-coupled receptors activated by inert drug-like small molecules. These novel techniques have been rapidly applied to many aspects of neuroscience, including research on learning and memory, decision making, and goal-directed behavior. By using specific light-sensitive opsins and DREADDs (designer receptors exclusively activated by designer drugs) to monitor the electrophysiological, biochemical, and behavioral outputs of specific neuronal types, the links between brain activity and behavior can be better evaluated. Additionally, optogenetics and DREADDs are beneficial in studying the pathogenesis of neurological conditions, such as depression, anxiety, pain, drug addiction, as well as neurodegenerative diseases, and may ultimately have therapeutic potential.

  1. Lees A.J., Hardy J., Revesz T. Parkinson’s disease. Lancet 2009; 373(9680): 2055–2066, https://doi.org/10.1016/s0140-6736(09)60492-x.
  2. Pisani A., Bernardi G., Ding J., Surmeier D.J. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 2007; 30(10): 545–553, https://doi.org/10.1016/j.tins.2007.07.008.
  3. Nakano K. Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev 2000; 22(Suppl 1): S5–S16, https://doi.org/10.1016/s0387-7604(00)00139-x.
  4. DeLong M.R., Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007; 64(1): 20, https://doi.org/10.1001/archneur.64.1.20.
  5. Obeso J.A., Rodríguez-Oroz M.C., Benitez-Temino B., Blesa F.J., Guridi J., Marin C., Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 2008; 23(Suppl 3): S548–S559, https://doi.org/10.1002/mds.22062.
  6. Wichmann T., DeLong M.R., Guridi J., Obeso J.A. Milestones in research on the pathophysiology of Parkinson’s disease. Mov Disord 2011; 26(6): 1032–1041, https://doi.org/10.1002/mds.23695.
  7. Gerfen C.R., Surmeier D.J. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011; 34(1): 441–466, https://doi.org/10.1146/annurev-neuro-061010-113641.
  8. Obeso J.A., Marin C., Rodriguez-Oroz C., Blesa J., Benitez-Temiño B., Mena-Segovia J., Rodríguez M., Olanow C.W. The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol 2008; 64(Suppl 2): S30–S46, https://doi.org/10.1002/ana.21481.
  9. Albin R.L., Young A.B., Penney J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12: 366–375, https://doi.org/10.1016/0166-2236(89)90074-x.
  10. Maia T.V., Frank M.J. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 2011; 14(2): 154–162, https://doi.org/10.1038/nn.2723.
  11. Cotzias G.C., Papavasiliou P.S., Gellene R. Modification of parkinsonism — chronic treatment with L-DOPA. N Engl J Med 1969; 13; 280(7): 337–345, https://doi.org/10.1056/nejm196902132800701.
  12. Marsden C.D. Parkinson’s disease. Lancet 1990; 35(8695): 948–952, https://doi.org/10.1016/0140-6736(90)91006-v.
  13. Nyholm D. The rationale for continuous dopaminergic stimulation in advanced Parkinson’s disease. Parkinsonism Relat Disord 2007; 13(Suppl): S13–S17, https://doi.org/10.1016/j.parkreldis.2007.06.005.
  14. Dobrzanski G., Kossut M. Application of the DREADD technique in biomedical brain research. Pharmacol Rep 2017; 69(2): 213–221, https://doi.org/10.1016/j.pharep.2016.10.015.
  15. Blandini F., Armentero M.T. Animal models of Parkinson’s disease. FEBS J 2012; 279(7): 1156–1166, https://doi.org/10.1111/j.1742-4658.2012.08491.x.
  16. Bergman H., Feingold A., Nini A., Raz A., Slovin H., Abeles M., Vaadia E. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 1998; 21: 32–38, https://doi.org/10.1016/s0166-2236(97)01151-x.
  17. Bevan M.D., Magill P.J., Terman D., Bolam J.P., Wilson C.J. Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 2002; 25(10): 525–531, https://doi.org/10.1016/s0166-2236(02)02235-x.
  18. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003; 18(4): 357–363, https://doi.org/10.1002/mds.10358.
  19. Hutchison W.D., Dostrovsky J.O., Walters J.R., Courtemanche R., Boraud T., Goldberg J., Brown P. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 2004; 24(42): 9240–9243, https://doi.org/10.1523/jneurosci.3366-04.2004.
  20. Gatev P., Darbin O., Wichmann T. Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov Disord 2006; 21(10): 1566–1577, https://doi.org/10.1002/mds.21033.
  21. Corbit V.L., Whalen T.C., Zitelli K.T., Crilly S.Y., Rubin J.E., Gittis A.H. Pallidostriatal projections promote β oscillations in a dopamine-depleted biophysical network model. J Neurosci 2016; 36(20): 5556–5571, https://doi.org/10.1523/jneurosci.0339-16.2016.
  22. Leblois A., Meissner W., Bioulac B., Gross C.E., Hansel D., Boraud T. Late emergence of synchronized oscillatory activity in the pallidum during progressive parkinsonism. Eur J Neurosci 2007; 26(6): 1701–1713, https://doi.org/10.1111/j.1460-9568.2007.05777.x.
  23. Mallet N., Pogosyan A., Sharott A., Csicsvari J., Bolam J.P., Brown P., Magill P.J. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 2008; 28(18): 4795–4806, https://doi.org/10.1523/jneurosci.0123-08.2008.
  24. Degos B., Deniau J.-M., Chavez M., Maurice N. Chronic but not acute dopaminergic transmission interruption promotes a progressive increase in cortical beta frequency synchronization: relationships to vigilance state and akinesia. Cereb Cortex 2009; 19(7): 1616–1630, https://doi.org/10.1093/cercor/bhn199.
  25. Kühn A.A., Kupsch A., Schneider G.H., Brown P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 2006; 23(7): 1956–1960, https://doi.org/10.1111/j.1460-9568.2006.04717.x.
  26. Hammond C., Bergman H., Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 2007; 30(7): 357–364, https://doi.org/10.1016/j.tins.2007.05.004.
  27. Kühn A.A., Tsui A., Aziz T., Ray N., Brücke C., Kupsch A., Schneider G.H., Brown P. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 2009; 215(2): 380–387, https://doi.org/10.1016/j.expneurol.2008.11.008.
  28. Eusebio A., Thevathasan W., Doyle Gaynor L., Pogosyan A., Bye E., Foltynie T., Zrinzo L., Ashkan K., Aziz T., Brown P. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry 2011; 82(5): 569–573, https://doi.org/10.1136/jnnp.2010.217489.
  29. Little S., Pogosyan A., Kuhn A.A., Brown P. Beta band stability over time correlates with parkinsonian rigidity and bradykinesia. Exp Neurol 2012; 236(2): 383–388, https://doi.org/10.1016/j.expneurol.2012.04.024.
  30. Oswal A., Beudel M., Zrinzo L., Limousin P., Hariz M., Foltynie T., Litvak V., Brown P. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain 2016; 139(Pt 5): 1482–1496, https://doi.org/10.1093/brain/aww048.
  31. Armbruster B.N., Li X., Pausch M.H., Herlitze S., Roth B.L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007; 104(12): 5163–5168, https://doi.org/10.1073/pnas.0700293104.
  32. Boyden E.S., Zhang F., Bamberg E., Nagel G., Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8(9): 1263–1268, https://doi.org/10.1038/nn1525.
  33. Vazey E.M., Aston-Jones G. New tricks for old dogmas: optogenetic and designer receptor insights for Parkinson’s disease. Brain Res 2013; 1511: 153–163, https://doi.org/10.1016/j.brainres.2013.01.021.
  34. Wiegert J.S., Mahn M., Prigge M., Printz Y., Yizhar O. Silencing neurons: tools, applications, and experimental constraints. Neuron 2017; 95(3): 504–529, https://doi.org/10.1016/j.neuron.2017.06.050.
  35. Fenno L., Yizhar O., Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011; 34(1): 389–412, https://doi.org/10.1146/annurev-neuro-061010-113817.
  36. Nagel G., Szellas T., Kateriya S., Adeishvili N., Hegemann P., Bamberg E. Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 2005; 33(4): 863–866, https://doi.org/10.1042/bst0330863.
  37. Chow B.Y., Han X., Dobry A.S., Qian X., Chuong A.S., Li M., Henninger M.A., Belfort G.M., Lin Y., Monahan P.E., Boyden E.S. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 2010; 463(7277): 98–102, https://doi.org/10.1038/nature08652.
  38. Gradinaru V., Thompson K.R., Deisseroth K. eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 2008; 36(1–4): 129–139, https://doi.org/10.1007/s11068-008-9027-6.
  39. Farrell M.S., Roth B.L. Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res 2013; 1511: 6–20, https://doi.org/10.1016/j.brainres.2012.09.043.
  40. Sternson S.M., Roth B.L. Chemogenetic tools to interrogate brain functions. Annu Rev Neurosci 2014; 37: 387–407, https://doi.org/10.1146/annurev-neuro-071013-014048.
  41. Vardy E., Robinson J.E., Li C., Olsen R.H.J., DiBerto J.F., Giguere P.M., Sassano F.M., Huang X.P., Zhu H., Urban D.J., White K.L., Rittiner J.E., Crowley N.A., Pleil K.E., Mazzone C.M., Mosier P.D., Song J., Kash T.L., Malanga C.J., Krashes M.J., Roth B.L. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 2015; 86(4): 936–946, https://doi.org/10.1016/j.neuron.2015.03.065.
  42. Lee H.M., Giguere P.M., Roth B.L. DREADDs: novel tools for drug discovery and development. Drug Discov Today 2014; 19(4): 469–473, https://doi.org/10.1016/j.drudis.2013.10.018.
  43. Zhu H., Roth B.L. Silencing synapses with DREADDs. Neuron 2014; 82(4): 723–725, https://doi.org/10.1016/j.neuron.2014.05.002.
  44. Urban D.J., Roth B.L. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 2015; 55(1): 399–417, https://doi.org/10.1146/annurev-pharmtox-010814-124803.
  45. Roth B.L. DREADDs for neuroscientists. Neuron 2016; 89(4): 683–694, https://doi.org/10.1016/j.neuron.2016.01.040.
  46. Bernstein J.G., Boyden E.S. Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn Sci 2011; 15(12): 592–600, https://doi.org/10.1016/j.tics.2011.10.003.
  47. Sjulson L., Cassataro D., DasGupta S., Miesenböck G. Cell-specific targeting of genetically encoded tools for neuroscience. Annu Rev Genet 2016; 50(1): 571–594, https://doi.org/10.1146/annurev-genet-120215-035011.
  48. Jiang J., Cui H., Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. Am J Physiol Regul Integr Comp Physiol 2017; 313(6): R633–R645, https://doi.org/10.1152/ajpregu.00091.2017.
  49. Boyden E.S. A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol Rep 2011; 3: 11, https://doi.org/10.3410/b3-11.
  50. Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18(9): 1213–1225, https://doi.org/10.1038/nn.4091.
  51. Rajasethupathy P., Ferenczi E., Deisseroth K. Targeting neural circuits. Cell 2016; 165(3): 524–534, https://doi.org/10.1016/j.cell.2016.03.047.
  52. Cui G., Jun S.B., Jin X., Pham M.D., Vogel S.S., Lovinger D.M., Costa R.M. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 2013; 494(7436): 238–242, https://doi.org/10.1038/nature11846.
  53. Freeze B.S., Kravitz A.V., Hammack N., Berke J.D., Kreitzer A.C. Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 2013; 33(47): 18531–18539, https://doi.org/10.1523/jneurosci.1278-13.2013.
  54. Lenz J.D., Lobo M.K. Optogenetic insights into striatal function and behavior. Behav Brain Res 2013; 255: 44–54, https://doi.org/10.1016/j.bbr.2013.04.018.
  55. Kravitz A.V., Freeze B.S., Parker P.R., Kay K., Thwin M.T., Deisseroth K., Kreitzer A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010; 466(7306): 622–666, https://doi.org/10.1038/nature09159.
  56. Kravitz A.V., Tye L.D., Kreitzer A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 2012; 15(6): 816–818, https://doi.org/10.1038/nn.3100.
  57. Lee H.J., Weitz A.J., Bernal-Casas D., Duffy B.A., Choy M., Kravitz A.V., Kreitzer A.C., Lee J.H. Activation of direct and indirect pathway medium spiny neurons drives distinct brain-wide responses. Neuron 2016; 91(2): 412–424, https://doi.org/10.1016/j.neuron.2016.06.010.
  58. Oldenburg I.A., Sabatini B.L. Antagonistic but not symmetric regulation of primary motor cortex by basal ganglia direct and indirect pathways. Neuron 2015; 86(5): 1174–1181, https://doi.org/10.1016/j.neuron.2015.05.008.
  59. Tecuapetla F., Matias S., Dugue G.P., Mainen Z.F., Costa R.M. Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat Commun 2014; 5(1), https://doi.org/10.1038/ncomms5315.
  60. Tecuapetla F., Jin X., Lima S.Q., Costa R.M. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 2016; 166(3): 703–715, https://doi.org/10.1016/j.cell.2016.06.032.
  61. Glajch K.E., Kelver D.A., Hegeman D.J., Cui Q., Xenias H.S., Augustine E.C., Hernández V.M., Verma N., Huang T.Y., Luo M., Justice N.J., Chan C.S. Npas1+ pallidal neurons target striatal projection neurons. J Neurosci 2016; 36(20): 5472–5488, https://doi.org/10.1523/jneurosci.1720-15.2016.
  62. Saunders A., Huang K.W., Sabatini B.L. Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PLoS One 2016; 11(2): e0149798, https://doi.org/10.1371/journal.pone.0149798.
  63. Straub C., Saulnier J.L., Bègue A., Feng D.D., Huang K.W., Sabatini B.L. Principles of synaptic organization of GABAergic interneurons in the striatum. Neuron 2016; 92(1): 84–92, https://doi.org/10.1016/j.neuron.2016.09.007.
  64. Tritsch N.X., Ding J.B., Sabatini B.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 2012; 490(7419): 262–266, https://doi.org/10.1038/nature11466.
  65. Straub C., Tritsch N.X., Hagan N.A., Gu C., Sabatini B.L. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J Neurosci 2014; 34(25): 8557–8569, https://doi.org/10.1523/jneurosci.0589-14.2014.
  66. Howe M.W., Dombeck D.A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 2016; 535(7613): 505–510, https://doi.org/10.1038/nature18942.
  67. Miguelez C., Morin S., Martinez A., Goillandeau M., Bezard E., Bioulac B., Baufreton J. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. J Physiol 2012; 590(22): 5861–5875, https://doi.org/10.1113/jphysiol.2012.241331.
  68. Fieblinger T., Graves S.M., Sebel L.E., Alcacer C., Plotkin J.L., Gertler T.S., Chan C.S., Heiman M., Greengard P., Cenci M.A., Surmeier D.J. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat Commun 2014; 5(1), https://doi.org/10.1038/ncomms6316.
  69. Chu H.-Y., Atherton J.F., Wokosin D., Surmeier D.J., Bevan M.D. Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron 2015; 85(2): 364–376, https://doi.org/10.1016/j.neuron.2014.12.022.
  70. Alexander G.E., Crutcher M.D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990; 13(7): 266–271, https://doi.org/10.1016/0166-2236(90)90107-l.
  71. DeLong M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990; 13(7): 281–285, https://doi.org/10.1016/0166-2236(90)90110-v.
  72. Gerfen C.R., Engber T.M., Mahan L.C., Susel Z., Chase T.N., Monsma F.J. Jr., Sibley D.R. D1Rs and D2Rs dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250(4986): 1429–1432, https://doi.org/10.1126/science.2147780.
  73. Durieux P.F., Schiffmann S.N., de Kerchove d’Exaerde A. Differential regulation of motor control and response to dopaminergic drugs by D1RsR and D2RsR neurons in distinct dorsal striatum subregions. EMBO J 2011; 31(3): 640–653, https://doi.org/10.1038/emboj.2011.400.
  74. Ryan M.B., Bair-Marshall C., Nelson A.B. Aberrant striatal activity in parkinsonism and levodopa-induced dyskinesia. Cell Rep 2018; 23(12): 3438–3446.e5, https://doi.org/10.1016/j.celrep.2018.05.059.
  75. Tai L.-H., Lee A.M., Benavidez N., Bonci A., Wilbrecht L. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 2012; 15(9): 1281–1289, https://doi.org/10.1038/nn.3188.
  76. Isomura Y., Takekawa T., Harukuni R., Handa T., Aizawa H., Takada M., Fukai T. Reward-modulated motor information in identified striatum neurons. J Neurosci 2013; 33(25): 10209–10220, https://doi.org/10.1523/jneurosci.0381-13.2013.
  77. Jin X., Tecuapetla F., Costa R.M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 2014; 17(3): 423–430, https://doi.org/10.1038/nn.3632.
  78. Tubert C., Taravini I.R.E., Flores-Barrera E., Sánchez G.M., Prost M.A., Avale M.E., Tseng K.Y., Rela L., Murer M.G. Decrease of a current mediated by Kv 1.3 channels causes striatal cholinergic interneuron hyperexcitability in experimental parkinsonism. Cell Rep 2016; 16(10): 2749–2762, https://doi.org/10.1016/j.celrep.2016.08.016.
  79. Maurice N,, Liberge M., Jaouen F., Ztaou S., Hanini M., Camon J., Deisseroth K., Amalric M., Kerkerian-Le Goff L., Beurrier C. Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism. Cell Rep 2015; 13(4): 657–666, https://doi.org/10.1016/j.celrep.2015.09.034.
  80. DeLong M.R., Wichmann T. Basal ganglia circuits as targets for neuromodulation in parkinson disease. JAMA Neurol 2015; 72(11): 1354, https://doi.org/10.1001/jamaneurol.2015.2397.
  81. Mastro K.J., Zitelli K.T., Willard A.M., Leblanc K.H., Kravitz A.V., Gittis A.H. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat Neurosci 2017; 20(6): 815–823, https://doi.org/10.1038/nn.4559.
  82. Assaf F., Schiller Y. A chemogenetic approach for treating experimental Parkinson’s disease. Mov Disord 2019; 34(4): 469–479, https://doi.org/10.1002/mds.27554.
  83. Lanciego J.L., Luquin N., Obeso J.A. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2012; 2(12): a009621–a009621, https://doi.org/10.1101/cshperspect.a009621.
  84. Galvan A., Devergnas A., Wichmann T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 2015; 9: 5, https://doi.org/10.3389/fnana.2015.00005.
  85. Przedborski S. The two-century journey of Parkinson disease research. Nat Rev Neurosci 2017; 18(4): 251–259, https://doi.org/10.1038/nrn.2017.25.
  86. Moon H.C., Won S.Y., Kim E.G., Kim H.K., Cho C.B., Park Y.S. Effect of optogenetic modulation on entopeduncular input affects thalamic discharge and behavior in an AAV2-α-synuclein-induced hemiparkinson rat model. Neurosci Lett 2018; 662: 129–135, https://doi.org/10.1016/j.neulet.2017.10.019.
  87. Kötter R. Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum. Prog Neurobiol 1994; 44(2): 163–196, https://doi.org/10.1016/0301-0082(94)90037-x.
  88. Fernandez E., Schiappa R., Girault J.-A., Le Novère N. DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2006; 2(12): e176, https://doi.org/10.1371/journal.pcbi.0020176.eor.
  89. Hunnicutt B.J., Jongbloets B.C., Birdsong W.T., Gertz K.J., Zhong H., Mao T. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 2016; 5, https://doi.org/10.7554/elife.19103.
  90. Marinelli L., Quartarone A., Hallett M., Frazzitta G., Ghilardi M.F. The many facets of motor learning and their relevance for Parkinson’s disease. Clin Neurophysiol 2017; 128(7): 1127–1141, https://doi.org/10.1016/j.clinph.2017.03.042.
  91. Gruszka A., Hampshire A., Barker R.A., Owen A.M. Normal aging and Parkinson’s disease are associated with the functional decline of distinct frontal-striatal circuits. Cortex 2017; 93: 178–192, https://doi.org/10.1016/j.cortex.2017.05.020.
  92. Churchland M.M., Cunningham J.P., Kaufman M.T., Foster J.D., Nuyujukian P., Ryu S.I., Shenoy K.V. Neural population dynamics during reaching. Nature 2012; 487(7405): 51–56, https://doi.org/10.1038/nature11129.
  93. Omrani M., Kaufman M.T., Hatsopoulos N.G., Cheney P.D. Perspectives on classical controversies about the motor cortex. J Neurophysiol 2017; 118(3): 1828–1848, https://doi.org/10.1152/jn.00795.2016.
  94. Rothwell P.E., Hayton S.J., Sun G.L., Fuccillo M.V., Lim B.K., Malenka R.C. Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 2015; 88(2): 345–356, https://doi.org/10.1016/j.neuron.2015.09.035.
  95. Obeso J.A., Rodriguez-Oroz M.C., Rodriguez M., Lanciego J.L., Artieda J., Gonzalo N., Olanow C.W. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 2000; 23: S8–S19, https://doi.org/10.1016/s1471-1931(00)00028-8.
  96. Litvak V., Jha A., Eusebio A., Oostenveld R., Foltynie T., Limousin P., Zrinzo L., Hariz M.I., Friston K., Brown P. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 2010; 134(2): 359–374, https://doi.org/10.1093/brain/awq332.
  97. Whitmer D., de Solages C., Hill B., Yu H., Henderson J.M., Bronte-Stewart H. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci 2012; 6:155, https://doi.org/10.3389/fnhum.2012.00155.
  98. de Hemptinne C., Ryapolova-Webb E.S., Air E.L., Garcia P.A., Miller K.J., Ojemann J.G., Ostrem J.L., Galifianakis N.B., Starr P.A. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl Acad Sci U S A 2013; 110(12): 4780–4785, https://doi.org/10.1073/pnas.1214546110.
  99. Shimamoto S.A., Ryapolova-Webb E.S., Ostrem J.L., Galifianakis N.B., Miller K.J., Starr P.A. Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease. J Neurosci 2013; 33(17): 7220–7233, https://doi.org/10.1523/jneurosci.4676-12.2013.
  100. Sharott A., Gulberti A., Zittel S., Tudor Jones A.A., Fickel U., Münchau A., Köppen J.A., Gerloff C., Westphal M., Buhmann C., Hamel W., Engel A.K., Moll C.K. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J Neurosci 2014; 34(18): 6273–6285, https://doi.org/10.1523/jneurosci.1803-13.2014.
  101. Delaville C., McCoy A.J., Gerber C.M., Cruz A.V., Walters J.R. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks. J Neurosci 2015; 35(17): 6918–6930, https://doi.org/10.1523/jneurosci.0587-15.2015.
  102. Mathai A., Ma Y., Paré J.-F., Villalba R.M., Wichmann T., Smith Y. Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 2015; 138(4): 946–962, https://doi.org/10.1093/brain/awv018.
  103. Chu H.-Y., McIver E.L., Kovaleski R.F., Atherton J.F., Bevan M.D. Loss of Hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron 2017; 95(6): 1306–1318.e5, https://doi.org/10.1016/j.neuron.2017.08.038.
  104. Kim J., Kim D. Rebound excitability mediates motor abnormalities in Parkinson’s disease. BMB Rep 2018; 51(1): 3–4, https://doi.org/10.5483/bmbrep.2018.51.1.004.
  105. Yasukawa T., Kita T., Xue Y., Kita H. Rat intralaminar thalamic nuclei projections to the globus pallidus: a biotinylated dextran amine anterograde tracing study. J Comp Neurol 2004; 471(2): 153–167, https://doi.org/10.1002/cne.20029.
  106. Alloway K.D., Smith J.B., Watson G.D.R. Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 2014; 111(1): 36–50, https://doi.org/10.1152/jn.00399.2013.
  107. Kita T., Shigematsu N., Kita H. Intralaminar and tectal projections to the subthalamus in the rat. Eur J Neurosci 2016; 44(11): 2899–2908, https://doi.org/10.1111/ejn.13413.
  108. Henderson J.M., Carpenter K., Cartwright H., Halliday G.M. Degeneration of the centré median-parafascicular complex in Parkinson’s disease. Ann Neurol 2000; 47(3): 345–352, https://doi.org/10.1002/1531-8249(200003)47:3345::aid-ana103.3.co;2-m.
  109. Villalba R.M., Wichmann T., Smith Y. Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct Funct 2013; 219(1): 381–394, https://doi.org/10.1007/s00429-013-0507-9.
  110. Peppe A., Gasbarra A., Stefani A., Chiavalon C., Pierantozzi M., Fermi E., Stanzione P., Caltagirone C., Mazzone P. Deep brain stimulation of CM/PF of thalamus could be the new elective target for tremor in advanced Parkinson’s disease? Parkinsonism Relat Disord 2008; 14(6): 501–504, https://doi.org/10.1016/j.parkreldis.2007.11.005.
  111. Jouve L., Salin P., Melon C., Kerkerian-Le Goff L. Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J Neurosci 2010; 30(29): 9919–9928, https://doi.org/10.1523/jneurosci.1404-10.2010.
  112. Yan W., Zhang Q.J., Liu J., Wang T., Wang S., Liu X., Chen L., Gui Z.H. The neuronal activity of thalamic parafascicular nucleus is conversely regulated by nigrostriatal pathway and pedunculopontine nucleus in the rat. Brain Res 2008; 1240: 204–212, https://doi.org/10.1016/j.brainres.2008.09.015.
  113. Nevado-Holgado A.J., Mallet N., Magill P.J., Bogacz R. Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. J Physiol 2014; 592(7): 1429–1455, https://doi.org/10.1113/jphysiol.2013.259721.
  114. Smith Y., Galvan A., Ellender T.J., Doig N., Villalba R.M., Huerta-Ocampo I., Wichmann T., Bolam J.P. The thalamostriatal system in normal and diseased states. Front Syst Neurosci 2014; 8: 5, https://doi.org/10.3389/fnsys.2014.00005.
  115. Parker P.R.L., Lalive A.L., Kreitzer A.C. Pathway-specific remodeling of thalamostriatal synapses in parkinsonian mice. Neuron 2016; 89(4): 734–740, https://doi.org/10.1016/j.neuron.2015.12.038.
  116. Brazhnik E., Novikov N., Preston M.W., Weiss A.R. Jr., McCoy A.J., Walters J.R. Effects of inhibitory DREADD activation in the parafascicular thalamic nucleus on nigral and cortical high beta oscillations and motor behavior in hemiparkinsonian rats. SFN Abstract; 2018.
  117. Kuo S.-H., Kenney C., Jankovic J. Bilateral pedunculopontine nuclei strokes presenting as freezing of gait. Mov Disord 2008; 23(4): 616–619, https://doi.org/10.1002/mds.21917.
  118. Roseberry T.K., Lee A.M., Lalive A.L., Wilbrecht L., Bonci A., Kreitzer A.C. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 2016; 164(3): 526–537, https://doi.org/10.1016/j.cell.2015.12.037.
  119. Hirsch E.C., Graybiel A.M., Duyckaerts C., Javoy-Agid F. Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy. Proc Natl Acad Sci U S A 1987; 84(16): 5976–5980, https://doi.org/10.1073/pnas.84.16.5976.
  120. McNaught K.S., Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 2001; 297(3): 191–194, https://doi.org/10.1016/s0304-3940(00)01701-8.
  121. McNaught K.S., Björklund L.M., Belizaire R., Isacson O., Jenner P., Olanow C.W. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 2002; 13(11): 1437–1441, https://doi.org/10.1097/00001756-200208070-00018.
  122. Pienaar I.S., Harrison I.F., Elson J.L., Bury A., Woll P., Simon A.K., Dexter D.T. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson’s disease. Brain Struct Funct 2013; 220(1): 479–500, https://doi.org/10.1007/s00429-013-0669-5.
  123. Pienaar I.S., Gartside S.E., Sharma P., De Paola V., Gretenkord S., Withers D., Elson J.L., Dexter D.T. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease. Mol Neurodegener 2015; 10(1): 47, https://doi.org/10.1186/s13024-015-0044-5.
  124. Little S., Brown P. Focusing brain therapeutic interventions in space and time for Parkinson’s disease. Curr Biol 2014; 24(18): R898–R909, https://doi.org/10.1016/j.cub.2014.08.002.
  125. Gradinaru V., Mogri M., Thompson K.R., Henderson J.M., Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009; 324(5925): 354–359, https://doi.org/10.1126/science.1167093.
  126. Sanders T.H., Jaeger D. Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 2016; 95: 225–237, https://doi.org/10.1016/j.nbd.2016.07.021.
  127. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 2008; 9(9): 665–677, https://doi.org/10.1038/nrn2471.
  128. Suarez L.M., Solis O., Aguado C., Lujan R., Moratalla R. L-DOPA oppositely regulates synaptic strength and spine morphology in D1Rs and D2Rs striatal projection neurons in dyskinesia. Cereb Cortex 2016; 26(11): 4253–4264, https://doi.org/10.1093/cercor/bhw263.
  129. Cenci M.A., Jörntell H., Petersson P. On the neuronal circuitry mediating L-DOPA-induced dyskinesia. J Neural Transm 2018; 125(8): 1157–1169, https://doi.org/10.1007/s00702-018-1886-0.
  130. Alcacer C., Andreoli L., Sebastianutto I., Jakobsson J., Fieblinger T., Cenci M.A. Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 2017; 127(2): 720–734, https://doi.org/10.1172/jci90132.
  131. Girasole A.E., Lum M.Y., Nathaniel D., Bair-Marshall C.J., Guenthner C.J., Luo L., Kreitzer A.C., Nelson A.B. A subpopulation of striatal neurons mediates levodopa-induced dyskinesia. Neuron 2018; 97(4): 787–795.e6, https://doi.org/10.1016/j.neuron.2018.01.017.
  132. Sagot B., Li L., Zhou F.-M. Hyperactive response of direct pathway striatal projection neurons to L-DOPA and D1 agonism in freely moving parkinsonian mice. Front Neural Circuits 2018; 12: 57, https://doi.org10.3389/fncir.2018.00057.
  133. Ding Y., Won L., Britt J.P., Lim S.A.O., McGehee D.S., Kang U.J. Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci U S A 2010; 108(2): 840–845, https://doi.org/10.1073/pnas.1006511108.
  134. Lim S.A.O., Kang U.J., McGehee D.S. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6, https://doi.org/10.3389/fnsyn.2014.00022.
  135. Won L., Ding Y., Singh P., Kang U.J. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in parkinsonian mice. J Neurosci 2014; 34(8): 3090–3094, https://doi.org/10.1523/jneurosci.2888-13.2014.
  136. Shen W., Plotkin J.L., Francardo V., Ko W.K., Xie Z., Li Q., Fieblinger T., Wess J., Neubig R.R., Lindsley C.W., Conn P.J., Greengard P., Bezard E., Cenci M.A., Surmeier D.J. M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 2015; 88(4): 762–773, https://doi.org/10.1016/j.neuron.2015.10.039.
  137. Aldrin-Kirk P., Heuer A., Rylander Ottosson D., Davidsson M., Mattsson B., Björklund T. Chemogenetic modulation of cholinergic interneurons reveals their regulating role on the direct and indirect output pathways from the striatum. Neurobiol Dis 2018; 109: 148–162, https://doi.org/10.1016/j.nbd.2017.10.010.
  138. Dell’Anno M.T., Caiazzo M., Leo D., Dvoretskova E., Medrihan L., Colasante G., Giannelli S., Theka I., Russo G., Mus L., Pezzoli G., Gainetdinov R.R., Benfenati F., Taverna S., Dityatev A., Broccoli V. Remote control of induced dopaminergic neurons in parkinsonian rats. J Clin Invest 2014; 124(7): 3215–3229, https://doi.org/10.1172/jci74664.
  139. Aldrin-Kirk P., Heuer A., Wang G., Mattsson B., Lundblad M., Parmar M., Björklund T. DREADD modulation of transplanted DA neurons reveals a novel parkinsonian dyskinesia mechanism mediated by the Serotonin 5-HT6 receptor. Neuron 2016; 90(5): 955–968, https://doi.org/10.1016/j.neuron.2016.04.017.
  140. Chen Y., Xiong M., Dong Y., Haberman A., Cao J., Liu H., Zhou W., Zhang S.C. Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease. Cell Stem Cell 2016; 18(6): 817–826, https://doi.org/10.1227/01.neu.0000499710.89208.c.
  141. Zuo F., Xiong F., Wang X., Li X., Wang R., Ge W., Bao X. Intrastriatal transplantation of human neural stem cells restores the impaired subventricular zone in parkinsonian mice. Stem Cells 2017; 35(6): 1519–1531, https://doi.org/10.1002/stem.2616.
  142. Politis M., Lindvall O. Clinical application of stem cell therapy in Parkinson’s disease. BMC Med 2012; 10: 1, https://doi.org/10.1186/1741-7015-10-1.
Novikov N.I., Brazhnik E.S., Kichigina V.F. The Use of Optogenetic and DREADDs Techniques: Applications to the Behavioral Pathology in Parkinson’s Disease (Review). Sovremennye tehnologii v medicine 2019; 11(2): 150, https://doi.org/10.17691/stm2019.11.2.21


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank