Today: May 1, 2025
RU / EN
Last update: Apr 30, 2025
The Potential of Near-Infrared Spectroscopy as a Therapeutic Tool Following a Stroke (Review)

The Potential of Near-Infrared Spectroscopy as a Therapeutic Tool Following a Stroke (Review)

Mokienko O.A.
Key words: near-infrared spectroscopy; neuroimaging; stroke; neurological rehabilitation; neurofeedback; neuromodulation.
2025, volume 17, issue 2, page 73.

Full text

html pdf
65
11

The advancement of novel technologies for the rehabilitation of post-stroke patients represents a significant challenge for a range of interdisciplinary fields. Near-infrared spectroscopy (NIRS) is an optical neuroimaging technique based on recording local hemodynamic changes at the cerebral cortex level. The technology is typically employed in post-stroke patients for diagnostic purposes, including the assessment of neuroplastic processes accompanying therapy, the study of hemispheric asymmetry, and the examination of functional brain networks. However, functional NIRS can also be used for therapeutic purposes, including the provision of biofeedback during rehabilitation tasks, as well as the navigation method during transcranial stimulation. The effectiveness of therapeutic NIRS application in stroke patients remains insufficiently studied, despite existing scientific evidence confirming its promising potential as a treatment method.

The review examines the published literature on the therapeutic applications of NIRS after stroke, evaluating its potential role in the rehabilitation process. The paper describes NIRS features, advantages, and disadvantages, determining its position among other neuroimaging technologies; analyzes the findings of neurophysiological studies, which justified the clinical trials of NIRS technology; and evaluates the results of the studies on the therapeutic use of NIRS in post-stroke patients. Two potential applications of NIRS for therapeutic purposes following a stroke were suggested: the first was to provide real-time feedback during movement training (motor or ideomotor ones, including that in brain–computer interface circuits), and the second was to facilitate navigation during transcranial stimulation.

Based on a comprehensive literature review, there were proposed and justified further research lines and development in this field.

  1. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021; 20(10): 795–820, https://doi.org/10.1016/S1474-4422(21)00252-0.
  2. Ignatyeva V.I., Voznyuk I.A., Shamalov N.A., Reznik A.V., Vinitskiy A.A., Derkach E.V. Social and economic burden of stroke in Russian Federation. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2023; 123(8–2): 5–15, https://doi.org/10.17116/jnevro20231230825.
  3. Builova T.V., Zverev Yu.P., Ivanova G.E., Kuzminova T.A. Current requirements for universities planning to train physical rehabilitation specialists in the context of the new medical rehabilitation model in the Russian Federation: a review. Vestnik vosstanovitel’noj mediciny 2022; 21(4): 17–26, https://doi.org/10.38025/2078-1962-2022-21-4-17-26.
  4. Hatem S.M., Saussez G., Della Faille M., Prist V., Zhang X., Dispa D., Bleyenheuft Y. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci 2016; 10: 442, https://doi.org/10.3389/fnhum.2016.00442.
  5. Petrikov S.S., Grechko A.V., Shchelkunova I.G., Zavaliy Ya.P., Khat’kova S.E., Zavaliy L.B. New perspectives of motor rehabilitation of patients after focal brain lesions. Voprosy neirokhirurgii im. N.N. Burdenko 2019; 83(6): 90–99, https://doi.org/10.17116/neiro20198306190.
  6. Ceradini M., Losanno E., Micera S., Bandini A., Orlandi S. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: a scoping review. J Neuroeng Rehabil 2024; 21(1): 75, https://doi.org/10.1186/s12984-024-01367-0.
  7. Saway B.F., Palmer C., Hughes C., Triano M., Suresh R.E., Gilmore J., George M., Kautz S.A., Rowland N.C. The evolution of neuromodulation for chronic stroke: from neuroplasticity mechanisms to brain-computer interfaces. Neurotherapeutics 2024; 21(3):e00337, https://doi.org/10.1016/j.neurot.2024.e00337.
  8. Soekadar S.R., Kohl S.H., Mihara M., von Lühmann A. Optical brain imaging and its application to neurofeedback. Neuroimage Clin 2021; 30: 102577, https://doi.org/10.1016/j.nicl.2021.102577.
  9. Huo C., Xu G., Xie H., Chen T., Shao G., Wang J., Li W., Wang D., Li Z. Functional near-infrared spectroscopy in non-invasive neuromodulation. Neural Regen Res 2024; 19(7): 1517–1522, https://doi.org/10.4103/1673-5374.387970.
  10. Yang M., Yang Z., Yuan T., Feng W., Wang P. A systemic review of functional near-infrared spectroscopy for stroke: current application and future directions. Front Neurol 2019; 10: 58, https://doi.org/10.3389/fneur.2019.00058.
  11. Cui X., Bray S., Bryant D.M., Glover G.H., Reiss A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 2011; 54(4): 2808–2821, https://doi.org/10.1016/j.neuroimage.2010.10.069.
  12. Xu G., Huo C., Yin J., Zhong Y., Sun G., Fan Y., Wang D., Li Z. Test-retest reliability of fNIRS in resting-state cortical activity and brain network assessment in stroke patients. Biomed Opt Express 2023; 14(8): 4217–4236, https://doi.org/10.1364/BOE.491610.
  13. Xie H., Li X., Xu G., Huo C., Fan Y., Li Z., Dou Z. Effects of transcranial magnetic stimulation on dynamic functional networks in stroke patients as assessed by functional near-infrared spectroscopy: a randomized controlled clinical trial. Cereb Cortex 2023; 33(24): 11668–11678, https://doi.org/10.1093/cercor/bhad404.
  14. Li Y., Yan Z.P., Zhang N.N., Ni J., Wang Z.Y. Investigation into the effectiveness of combining transcranial direct current stimulation and transcutaneous electrical nerve stimulation as treatment options for poststroke shoulder pain by utilizing functional near-infrared spectroscopy. Ther Clin Risk Manag 2023; 19: 875–887, https://doi.org/10.2147/TCRM.S431816.
  15. Yoo M., Chun M.H., Hong G.R., Lee C., Lee J.K., Lee A. Effects of training with a powered exoskeleton on cortical activity modulation in hemiparetic chronic stroke patients: a randomized controlled pilot trial. Arch Phys Med Rehabil 2023; 104(10): 1620–1629, https://doi.org/10.1016/j.apmr.2023.05.012.
  16. Wang Q., Dai W., Xu S., Zhu S., Sui Y., Kan C., Shen Y., Zhu Y., Guo C., Wang T. Brain activation of the PFC during dual-task walking in stroke patients: a systematic review and meta-analysis of functional near-infrared spectroscopy studies. Front Neurosci 2023; 17: 1111274, https://doi.org/10.3389/fnins.2023.1111274.
  17. Dai L., Zhang W., Zhang H., Fang L., Chen J., Li X., Yu H., Song J., Chen S., Zheng B., Zhang Y., Li Z. Effects of robot-assisted upper limb training combined with intermittent theta burst stimulation (iTBS) on cortical activation in stroke patients: a functional near-infrared spectroscopy study. NeuroRehabilitation 2024; 54(3): 421–434, https://doi.org/10.3233/NRE-230355.
  18. Ansado J., Chasen C., Bouchard S., Northoff G. How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training. Neurosci Biobehav Rev 2021; 120: 583–594, https://doi.org/10.1016/j.neubiorev.2020.05.018.
  19. Tamashiro H., Kinoshita S., Okamoto T., Urushidani N., Abo M. Effect of baseline brain activity on response to low-frequency rTMS/intensive occupational therapy in poststroke patients with upper limb hemiparesis: a near-infrared spectroscopy study. Int J Neurosci 2019; 129(4): 337–343, https://doi.org/10.1080/00207454.2018.1536053.
  20. Huo C., Xu G., Li Z., Lv Z., Liu Q., Li W., Ma H., Wang D., Fan Y. Limb linkage rehabilitation training-related changes in cortical activation and effective connectivity after stroke: a functional near-infrared spectroscopy study. Sci Rep 2019; 9(1): 6226, https://doi.org/10.1038/s41598-019-42674-0.
  21. Delorme M., Vergotte G., Perrey S., Froger J., Laffont I. Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: an fNIRS study. Restor Neurol Neurosci 2019; 37(3): 207–218, https://doi.org/10.3233/RNN-180877.
  22. Chen S., Zhang X., Chen X., Zhou Z., Cong W., Chong K., Xu Q., Wu J., Li Z., Lin W., Shan C. The assessment of interhemispheric imbalance using functional near-infrared spectroscopic and transcranial magnetic stimulation for predicting motor outcome after stroke. Front Neurosci 2023; 17: 1231693, https://doi.org/10.3389/fnins.2023.1231693.
  23. Huo C., Sun Z., Xu G., Li X., Xie H., Song Y., Li Z., Wang Y. fNIRS-based brain functional response to robot-assisted training for upper-limb in stroke patients with hemiplegia. Front Aging Neurosci 2022; 14: 1060734, https://doi.org/10.3389/fnagi.2022.1060734.
  24. Ni J., Jiang W., Gong X., Fan Y., Qiu H., Dou J., Zhang J., Wang H., Li C., Su M. Effect of rTMS intervention on upper limb motor function after stroke: a study based on fNIRS. Front Aging Neurosci 2023; 14: 1077218, https://doi.org/10.3389/fnagi.2022.1077218.
  25. He X., Lei L., Yu G., Lin X., Sun Q., Chen S. Asymmetric cortical activation in healthy and hemiplegic individuals during walking: a functional near-infrared spectroscopy neuroimaging study. Front Neurol 2023; 13: 1044982, https://doi.org/10.3389/fneur.2022.1044982.
  26. Kohl S.H., Mehler D.M.A., Lührs M., Thibault R.T., Konrad K., Sorger B. The potential of functional near-infrared spectroscopy-based neurofeedback — a systematic review and recommendations for best practice. Front Neurosci 2020; 14: 594, https://doi.org/10.3389/fnins.2020.00594.
  27. Zhao Y.N., Han P.P., Zhang X.Y., Bi X. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging during rehabilitation following stroke: a review. Med Sci Monit 2024; 30: e943785, https://doi.org/10.12659/MSM.943785.
  28. Ferrari M., Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012; 63(2): 921–935, https://doi.org/10.1016/j.neuroimage.2012.03.049.
  29. Tarasov A.P., Egorov A.I., Drozdov D.V. Optical tissue oximetry: problems of application in functional diagnostics. Meditsinskiy alfavit 2017; 2(22): 48–52.
  30. Isaev M.R., Oganesyan V.V., Husek D., Snasel V. Modeling light propagation through the tissues of the head taking account of scattering anisotropy to optimize the positioning of irradiation detectors and sources in a brain-computer interface based on near infrared spectroscopy. Neurosci Behav Physi 2018; 48: 1158–1163, https://doi.org/10.1007/s11055-018-0680-7.
  31. Chen W.L., Wagner J., Heugel N., Sugar J., Lee Y.W., Conant L., Malloy M., Heffernan J., Quirk B., Zinos A., Beardsley S.A., Prost R., Whelan H.T. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions. Front Neurosci 2020; 14: 724, https://doi.org/10.3389/fnins.2020.00724.
  32. Harrar D.B., Sun L.R., Segal J.B., Lee S., Sansevere A.J. Neuromonitoring in children with cerebrovascular disorders. Neurocrit Care 2023; 38(2): 486–503, https://doi.org/10.1007/s12028-023-01689-2.
  33. Felling R.J., Kamerkar A., Friedman M.L., Said A.S., LaRovere K.L., Bell M.J., Bembea M.M. Neuromonitoring during ECMO support in children. Neurocrit Care 2023; 39(3): 701–713, https://doi.org/10.1007/s12028-023-01675-8.
  34. Guo Y., Li Y., Liu F., Lin H., Sun Y., Zhang J., Hong Q., Yao M., Chi X. Association between neural prosody discrimination and language abilities in toddlers: a functional near-infrared spectroscopy study. BMC Pediatr 2024; 24(1): 449, https://doi.org/10.1186/s12887-024-04889-7.
  35. Ishii-Takahashi A., Takizawa R., Nishimura Y., Kawakubo Y., Kuwabara H., Matsubayashi J., Hamada K., Okuhata S., Yahata N., Igarashi T., Kawasaki S., Yamasue H., Kato N., Kasai K., Kano Y. Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults. Neuroimage Clin 2013; 4: 53–63, https://doi.org/10.1016/j.nicl.2013.10.002.
  36. Lee Friesen C., Lawrence M., Ingram T.G.J., Boe S.G. Home-based portable fNIRS-derived cortical laterality correlates with impairment and function in chronic stroke. Front Hum Neurosci 2022; 16: 1023246, https://doi.org/10.3389/fnhum.2022.1023246.
  37. Coyle S., Ward T., Markham C., McDarby G. On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol Meas 2004; 25(4): 815–822, https://doi.org/10.1088/0967-3334/25/4/003.
  38. Sitaram R., Zhang H., Guan C., Thulasidas M., Hoshi Y., Ishikawa A., Shimizu K., Birbaumer N. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Neuroimage 2007; 34(4): 1416–1427, https://doi.org/10.1016/j.neuroimage.2006.11.005.
  39. Coyle S.M., Ward T.E., Markham C.M. Brain-computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng 2007; 4(3): 219–226, https://doi.org/10.1088/1741-2560/4/3/007.
  40. Hramov A.E., Grubov V., Badarin A., Maksimenko V.A., Pisarchik A.N. Functional near-infrared spectroscopy for the classification of motor-related brain activity on the sensor-level. Sensors (Basel) 2020; 20(8): 2362, https://doi.org/10.3390/s20082362.
  41. Isaev M.R., Bobrov P.D. Effects of selection of the learning set formation strategy and filtration method on the effectiveness of a BCI based on near infrared spectrometry. Neurosci Behav Physi 2023; 53: 373–380, https://doi.org/10.1007/s11055-023-01436-2.
  42. Tanamachi K., Kuwahara W., Okawada M., Sasaki S., Kaneko F. Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review. J Neuroeng Rehabil 2023; 20(1): 159, https://doi.org/10.1186/s12984-023-01282-w.
  43. Yan T., Liang W., Chan C.W.H., Shen Y., Liu S., Li M. Effects of motor imagery training on gait performance in individuals after stroke: a systematic review and meta-analysis. Disabil Rehabil 2025; 47(1): 47–61, https://doi.org/10.1080/09638288.2024.2337091.
  44. Villa-Berges E., Laborda Soriano A.A., Lucha-López O., Tricas-Moreno J.M., Hernández-Secorún M., Gómez-Martínez M., Hidalgo-García C. Motor imagery and mental practice in the subacute and chronic phases in upper limb rehabilitation after stroke: a systematic review. Occup Ther Int 2023; 2023: 3752889, https://doi.org/10.1155/2023/3752889.
  45. Karikari E., Koshechkin K.A. Review on brain-computer interface technologies in healthcare. Biophys Rev 2023; 15(5): 1351–1358, https://doi.org/10.1007/s12551-023-01138-6.
  46. Valeriani D., Santoro F., Ienca M. The present and future of neural interfaces. Front Neurorobot 2022; 16: 953968, https://doi.org/10.3389/fnbot.2022.953968.
  47. Peksa J., Mamchur D. State-of-the-art on brain-computer interface technology. Sensors (Basel) 2023; 23(13): 6001, https://doi.org/10.3390/s23136001.
  48. The Brain-Computer Interface (BCI) Society website. BCI definition. URL: https://bcisociety.org/bci-definition/ (accessed 2024-05-30).
  49. Mokienko O.A., Lyukmanov R.K., Bobrov P.D., Suponeva N.A., Piradov M.A. Brain-computer interfaces for upper limb motor recovery after stroke: current status and development prospects (review). Sovremennye tehnologii v medicine 2023; 15(6): 63–73, https://doi.org/10.17691/stm2023.15.6.07.
  50. Mihara M., Miyai I., Hattori N., Hatakenaka M., Yagura H., Kawano T., Okibayashi M., Danjo N., Ishikawa A., Inoue Y., Kubota K. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS One 2012; 7(3): e32234, https://doi.org/10.1371/journal.pone.0032234.
  51. Kober S.E., Wood G., Kurzmann J., Friedrich E.V., Stangl M., Wippel T., Väljamäe A., Neuper C. Near-infrared spectroscopy based neurofeedback training increases specific motor imagery related cortical activation compared to sham feedback. Biol Psychol 2014; 95: 21–30, https://doi.org/10.1016/j.biopsycho.2013.05.005.
  52. Ota Y., Takamoto K., Urakawa S., Nishimaru H., Matsumoto J., Takamura Y., Mihara M., Ono T., Nishijo H. Motor imagery training with neurofeedback from the frontal pole facilitated sensorimotor cortical activity and improved hand dexterity. Front Neurosci 2020; 14: 34, https://doi.org/10.3389/fnins.2020.00034.
  53. Fujimoto H., Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Miyai I., Mochizuki H. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. Neurophotonics 2017; 4(4): 045003, https://doi.org/10.1117/1.NPh.4.4.045003.
  54. Wang Z., Zhou Y., Chen L., Gu B., Yi W., Liu S., Xu M., Qi H., He F., Ming D. BCI monitor enhances electroencephalographic and cerebral hemodynamic activations during motor training. IEEE Trans Neural Syst Rehabil Eng 2019; 27(4): 780–787, https://doi.org/10.1109/TNSRE.2019.2903685.
  55. Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T., Miyai I. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 2013; 44(4): 1091–1098, https://doi.org/10.1161/STROKEAHA.111.674507.
  56. Rieke J.D., Matarasso A.K., Yusufali M.M., Ravindran A., Alcantara J., White K.D., Daly J.J. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. J Neurosci Methods 2020; 341: 108719, https://doi.org/10.1016/j.jneumeth.2020.108719.
  57. Mihara M., Fujimoto H., Hattori N., Otomune H., Kajiyama Y., Konaka K., Watanabe Y., Hiramatsu Y., Sunada Y., Miyai I., Mochizuki H. Effect of neurofeedback facilitation on poststroke gait and balance recovery: a randomized controlled trial. Neurology 2021; 96(21): e2587–e2598, https://doi.org/10.1212/WNL.0000000000011989.
  58. Lyukmanov R.Kh., Isaev M.R., Mokienko O.A., Bobrov P.D., Ikonnikova E.S., Cherkasova A.N., Suponeva N.A. Brain-computer interface using functional near-infrared spectroscopy for post-stroke motor rehabilitation: case series. Annals of Clinical and Experimental Neurology 2023; 17(4): 82–88, https://doi.org/10.54101/ACEN.2023.4.10.
  59. Isaev M.R., Mokienko O.A., Lyukmanov R.K., Ikonnikova E.S., Cherkasova A.N., Suponeva N.A., Piradov M.A., Bobrov P.D. A multiple session dataset of NIRS recordings from stroke patients controlling brain-computer interface. Scientific Data 2024; 11: 1168, https://doi.org/10.1038/s41597-024-04012-6.
  60. Mokienko O.A., Lyukmanov R.K., Bobrov P.D., Isaev M.R., Ikonnikova E.S., Cherkasova А.N., Suponeva N.A., Piradov M.A. Brain-computer interfaces based on near-infrared spectroscopy and electroencephalography registration in post-stroke rehabilitation: a comparative study. Neurology, Neuropsychiatry, Psychosomatics 2024; 16(5): 17–23, https://doi.org/10.14412/2074-2711-2024-5-17-23.
  61. Poydasheva A.G., Bakulin I.S., Zabirova A.Kh., Kirichenko O.A., Suponeva N.A., Piradov M.A. Therapeutic transcranial magnetic stimulation for post-stroke paresis: the need for a differentiated approach. Nervnyye bolezni 2023; 4: 29–34, https://doi.org/10.24412/2226-0757-2023-13043.
  62. Zhong G., Yang Z., Jiang T. Precise modulation strategies for transcranial magnetic stimulation: advances and future directions. Neurosci Bull 2021; 37(12): 1718–1734, https://doi.org/10.1007/s12264-021-00781-x.
  63. Tang Z., Liu T., Han K., Liu Y., Su W., Wang R., Zhang H. The effects of rTMS on motor recovery after stroke: a systematic review of fMRI studies. Neurol Sci 2024; 45(3): 897–909, https://doi.org/10.1007/s10072-023-07123-x.
  64. Siebner H.R., Funke K., Aberra A.S., Antal A., Bestmann S., Chen R., Classen J., Davare M., Di Lazzaro V., Fox P.T., Hallett M., Karabanov A.N., Kesselheim J., Beck M.M., Koch G., Liebetanz D., Meunier S., Miniussi C., Paulus W., Peterchev A.V., Popa T., Ridding M.C., Thielscher A., Ziemann U., Rothwell J.C., Ugawa Y. Transcranial magnetic stimulation of the brain: what is stimulated? — A consensus and critical position paper. Clin Neurophysiol 2022; 140: 59–97, https://doi.org/10.1016/j.clinph.2022.04.022.
  65. Wang C., Zhang Q., Zhang L., Zhao D., Xu Y., Liu Z., Wu C., Wu S., Yong M., Wu L. Comparative efficacy of different repetitive transcranial magnetic stimulation protocols for lower extremity motor function in stroke patients: a network meta-analysis. Front Neurosci 2024; 18: 1352212, https://doi.org/10.3389/fnins.2024.1352212.
  66. Zhu M., Huang S., Chen W., Pan G., Zhou Y. The effect of transcranial magnetic stimulation on cognitive function in post-stroke patients: a systematic review and meta-analysis. BMC Neurol 2024; 24(1): 234, https://doi.org/10.1186/s12883-024-03726-9.
  67. Liu X., Li H., Yang S., Xiao Z., Li Q., Zhang F., Ma J. Efficacy of repetitive transcranial magnetic stimulation on post-stroke cognitive impairment: a systematic and a network meta-analysis. Int J Geriatr Psychiatry 2024; 39(7): e6117, https://doi.org/10.1002/gps.6117.
  68. Cheng J., Jiang Y., Rao T., Yang Y., Liu Y., Zhan Y., Yang S. Repetitive transcranial magnetic stimulation for post-stroke non-fluent aphasia: a systematic review and meta-analysis of randomized controlled trials. Front Neurol 2024; 15: 1348695, https://doi.org/10.3389/fneur.2024.1348695.
  69. Han D., Cheng J., Chen Y., Du H., Lin Z., Zhong R., Liu Z. Evidence for intermittent theta burst transcranial magnetic stimulation for dysphagia after stroke: a systematic review and meta-analysis. Dysphagia 2025; 40(1): 54–65, https://doi.org/10.1007/s00455-024-10729-8.
  70. Mayor R.S., Ferreira N.R., Lanzaro C., Castelo-Branco M., Valentim A., Donato H., Lapa T. Noninvasive transcranial brain stimulation in central post-stroke pain: a systematic review. Scand J Pain 2024; 24(1): 10.1515/sjpain-2023-0130, https://doi.org/10.1515/sjpain-2023-0130.
  71. Liu Y., Miao R., Zou H., Hu Q., Yin S., Zhu F. Repetitive transcranial magnetic stimulation in central post-stroke pain: a meta-analysis and systematic review of randomized controlled trials. Front Neurosci 2024; 18: 1367649, https://doi.org/10.3389/fnins.2024.1367649.
  72. Wang T., Liu X., Wu X., Fan Y., Lv Y., Chen B. High-frequency rTMS of the left dorsolateral prefrontal cortex for post-stroke depression: a systematic review and meta-analysis. Clin Neurophysiol 2024; 157: 130–141, https://doi.org/10.1016/j.clinph.2023.11.019.
  73. Nettekoven C., Volz L.J., Leimbach M., Pool E.M., Rehme A.K., Eickhoff S.B., Fink G.R., Grefkes C. Inter-individual variability in cortical excitability and motor network connectivity following multiple blocks of rTMS. Neuroimage 2015; 118: 209–218, https://doi.org/10.1016/j.neuroimage.2015.06.004.
  74. Curtin A., Tong S., Sun J., Wang J., Onaral B., Ayaz H. A systematic review of integrated functional near-infrared spectroscopy (fNIRS) and transcranial magnetic stimulation (TMS) studies. Front Neurosci 2019; 13: 84, https://doi.org/10.3389/fnins.2019.00084.
  75. Jiang S., Carpenter L.L., Jiang H. Optical neuroimaging: advancing transcranial magnetic stimulation treatments of psychiatric disorders. Vis Comput Ind Biomed Art 2022; 5(1): 22, https://doi.org/10.1186/s42492-022-00119-y.
  76. Hara T., Abo M., Kakita K., Mori Y., Yoshida M., Sasaki N. The effect of selective transcranial magnetic stimulation with functional near-infrared spectroscopy and intensive speech therapy on individuals with post-stroke aphasia. Eur Neurol 2017; 77(3–4): 186–194, https://doi.org/10.1159/000457901.
  77. Chang P.W., Lu C.F., Chang S.T., Tsai P.Y. functional near-infrared spectroscopy as a target navigator for rTMS modulation in patients with hemiplegia: a randomized control study. Neurol Ther 2022; 11(1): 103–121, https://doi.org/10.1007/s40120-021-00300-0.
  78. A study on the effectiveness of upper extremity rehabilitation training using brain-machine interface biofeedback in stroke patients with hemiplegia. 2020. URL: https://clinicaltrials.gov/study/NCT04290377 (study start 2020.02.25).
  79. Asgher U., Khan M.J., Asif Nizami M.H., Khalil K., Ahmad R., Ayaz Y., Naseer N. Motor training using mental workload (MWL) with an assistive soft exoskeleton system: a functional near-infrared spectroscopy (fNIRS) study for brain-machine interface (BMI). Front Neurorobot 2021; 15: 605751, https://doi.org/10.3389/fnbot.2021.605751.
  80. Khan R.A., Naseer N., Qureshi N.K., Noori F.M., Nazeer H., Khan M.U. fNIRS-based neurorobotic interface for gait rehabilitation. J Neuroeng Rehabil 2018; 15(1): 7, https://doi.org/10.1186/s12984-018-0346-2.
  81. Xie Y.L., Yang Y.X., Jiang H., Duan X.Y., Gu L.J., Qing W., Zhang B., Wang Y.X. Brain-machine interface-based training for improving upper extremity function after stroke: a meta-analysis of randomized controlled trials. Front Neurosci 2022; 16: 949575, https://doi.org/10.3389/fnins.2022.949575.
  82. Bai Z., Fong K.N.K., Zhang J.J., Chan J., Ting K.H. Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2020; 17(1): 57, https://doi.org/10.1186/s12984-020-00686-2.
  83. Mansour S., Ang K.K., Nair K.P.S., Phua K.S., Arvaneh M. Efficacy of brain-computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: a systematic review and meta-analysis of randomized controlled trials. Clin EEG Neurosci 2022; 53(1): 79–90, https://doi.org/10.1177/15500594211009065.
  84. Nojima I., Sugata H., Takeuchi H., Mima T. Brain-computer interface training based on brain activity can induce motor recovery in patients with stroke: a meta-analysis. Neurorehabil Neural Repair 2022; 36(2): 83–96, https://doi.org/10.1177/15459683211062895.
  85. Kotov S.V., Slyunkova E.V., Borisova V.A., Isakova E.V. Effectiveness of brain-computer interfaces and cognitive training using computer technologies in restoring cognitive functions in patients after stroke. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2022; 122(12–2): 67–75, https://doi.org/10.17116/jnevro202212212267.
  86. Borisova V.A., Isakova E.V., Kotov S.V. Possibilities of the brain-computer interface in the correction of post-stroke cognitive impairments. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2022; 122(12): 60–66, https://doi.org/10.17116/jnevro202212212260.
  87. Kober S.E., Gressenberger B., Kurzmann J., Neuper C., Wood G. Voluntary modulation of hemodynamic responses in swallowing related motor areas: a near-infrared spectroscopy-based neurofeedback study. PLoS One 2015; 10(11): e0143314, https://doi.org/10.1371/journal.pone.0143314.
  88. Kober S.E., Hinterleitner V., Bauernfeind G., Neuper C., Wood G. Trainability of hemodynamic parameters: a near-infrared spectroscopy based neurofeedback study. Biol Psychol 2018; 136: 168–180, https://doi.org/10.1016/j.biopsycho.2018.05.009.
  89. Kober S.E., Spörk R., Bauernfeind G., Wood G. Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy-based neurofeedback study. Neurobiol Aging 2019; 81: 127–137, https://doi.org/10.1016/j.neurobiolaging.2019.05.022.
  90. Independent use of brain measurement-based rehabilitation system by stroke survivors: a randomized open label phase 1 clinical trial with blinded evaluation. 2021. URL: https://clinicaltrials.gov/study/NCT05016193 (study start 2021.08.01).
  91. Portable method of motor rehabilitation using functional near-infrared spectroscopy-based brain-computer-interface to augment post-stroke recovery (fNIRS-PROMOTE-recovery). 2022. URL: https://clinicaltrials.gov/study/NCT05258591 (study start 2022.02.23).
  92. Shin J., von Lühmann A., Kim D.W., Mehnert J., Hwang H.J., Müller K.R. Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. Sci Data 2018; 5: 180003, https://doi.org/10.1038/sdata.2018.3.
  93. Shin J., von Luhmann A., Blankertz B., Kim D.W., Jeong J., Hwang H.J., Muller K.R. Open access dataset for EEG+NIRS single-trial classification. IEEE Trans Neural Syst Rehabil Eng 2017; 25(10): 1735–1745, https://doi.org/10.1109/TNSRE.2016.2628057.
  94. von Lühmann A., Li X., Gilmore N., Boas D.A., Yücel M.A. Open access multimodal fNIRS resting state dataset with and without synthetic hemodynamic responses. Front Neurosci 2020; 14: 579353, https://doi.org/10.3389/fnins.2020.579353.
  95. Bak S., Park J., Shin J., Jeong J. Open-access fNIRS dataset for classification of unilateral finger- and foot-tapping. Electronics 2019; 8(12), https://doi.org/10.3390/electronics8121486.
  96. Khan H., Naseer N., Yazidi A., Eide P.K., Hassan H.W., Mirtaheri P. Analysis of human gait using hybrid EEG-fNIRS-based BCI system: a review. Front Hum Neurosci 2021; 14: 613254, https://doi.org/10.3389/fnhum.2020.613254.
  97. Yin X., Xu B., Jiang C., Fu Y., Wang Z., Li H., Shi G. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. J Neural Eng 2015; 12(3): 036004, https://doi.org/10.1088/1741-2560/12/3/036004.
  98. Ahn S., Jun S.C. Multi-modal integration of EEG-fNIRS for brain-computer interfaces — current limitations and future directions. Front Hum Neurosci 2017; 11: 503, https://doi.org/10.3389/fnhum.2017.00503.
  99. Bobrov P.D., Isaev M.R., Korshakov A.V., Oganesyan V.V., Kerechanin J.V., Popodko A.I., Frolov A.A. Sources of electrophysiological and foci of hemodynamic brain activity most relevant for controlling a hybrid brain-computer interface based on classification of EEG patterns and near-infrared spectrography signals during motor imagery. Hum Physiol 2016; 42(3): 241–251, https://doi.org/10.1134/S036211971603004X.
  100. Favetta M., Romano A., Valè N., Cieslik B., Federico S., Girolami A., Mazzarotto D., Pregnolato G., Righetti A., Salvalaggio S., Castelli E., Smania N., Bargellesi S., Kiper P., Petrarca M. A scoping review of scientific concepts concerning motor recovery after stroke as employed in clinical trials. Front Neurol 2023; 14: 1221656, https://doi.org/10.3389/fneur.2023.1221656.
  101. Effects of repetitive transcranial magnetic stimulation based on hemodynamic activity for language recovery in early poststroke aphasia: randomized controlled trial. 2015. URL: https://clinicaltrials.gov/study/NCT02591719 (study start 2015.11).
  102. Efficacy of individualized repetitive transcranial magnetic stimulation based on cortical laterality for motor recovery in stroke patients. 2023. URL: https://clinicaltrials.gov/study/NCT05914038 (study start 2023.10.13).
  103. Sharma G., Roy Chowdhury S. Design of NIRS probe based on computational model to find out the optimal location for non-invasive brain stimulation. J Med Syst 2018; 42(12): 244, https://doi.org/10.1007/s10916-018-1039-x.
  104. Yang D., Shin Y.I., Hong K.S. Systemic review on transcranial electrical stimulation parameters and EEG/fNIRS Features for brain diseases. Front Neurosci 2021; 15: 629323, https://doi.org/10.3389/fnins.2021.629323.
Mokienko O.A. The Potential of Near-Infrared Spectroscopy as a Therapeutic Tool Following a Stroke (Review). Sovremennye tehnologii v medicine 2025; 17(2): 73, https://doi.org/10.17691/stm2025.17.2.07


Journal in Databases

pubmed_logo.jpg

web_of_science.jpg

scopus.jpg

crossref.jpg

ebsco.jpg

embase.jpg

ulrich.jpg

cyberleninka.jpg

e-library.jpg

lan.jpg

ajd.jpg

SCImago Journal & Country Rank